Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
15 17
Sample Output
14
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56#include<iostream> #include<cmath> #include<string.h> #include<algorithm> #include<cstdio> #include<queue> #include<set> #include<map> #include<vector> #include<string> using namespace std; typedef long long ll; int vis[100001]={0}; int n,m; void bfs(int start) { queue<int>q; q.push(start); int head; while(!q.empty()) { head = q.front(); q.pop(); if(head == m) { break; } if(head>0&&!vis[head-1]) { int New = head-1; vis[New] = vis[head]+1; q.push(New); } if(head<m&&!vis[head+1]) { int New = head+1; vis[New] = vis[head]+1; q.push(New); } if(2*head<100001&&!vis[2*head]) { int New = 2*head; vis[New] = vis[head]+1; q.push(New); } } } int main(){ while(cin>>n>>m) { memset(vis,0,sizeof(vis)); bfs(n); cout<<vis[m]<<endl; } }
最后
以上就是冷酷绿草最近收集整理的关于Catch That Cow的全部内容,更多相关Catch内容请搜索靠谱客的其他文章。
发表评论 取消回复