成图效果

涉及内容
-
数据堆积
复制代码
1
2
3
4
5
6
7
8#关键代码 y1 = (0,0,0,30.54,32.67,38.29,81.51) y2 = (87.83,85.07,92.14,57.29,52.4,53.85,14.55) d = [] for i in range(0, len(y2)): sum = y1[i] + y2[i] d.append(sum) y3 = (12.17,14.93,7.86,12.17,14.93,7.86,3.94)
-
横向底部图例
复制代码
1
2
3#关键代码 plt.legend((p1[0], p2[0], p3[0]), ('精确匹配', '粗匹配', '未匹配'),ncol=3,bbox_to_anchor=(0.5, -0.1), loc=8, borderaxespad=-3,frameon=False)
-
图片显示不完整
复制代码
1
2#关键代码(通过保存解决) fig.savefig('pipeilv.jpg',bbox_inches='tight')
-
中文字体与英文字体
复制代码
1
2
3
4
5
6
7
8#关键代码(简便方法:折中找一个既像宋体,又像Times New Roman) config = { "font.family": 'STSong', "font.size": 12, "mathtext.fontset": 'stix', "font.serif": ['STSong'], } rcParams.update(config)
重要参考
Python 画简单堆叠柱状图 (数据可视化) - 程序员大本营 (pianshen.com)
完整代码
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58import numpy as np import matplotlib.pyplot as plt import matplotlib from matplotlib import rcParams config = { "font.family": 'STSong', "font.size": 12, "mathtext.fontset": 'stix', "font.serif": ['STSong'], } rcParams.update(config) fig=plt.figure(figsize=(8,4))#调整画布大小 N = 7 y1 = (15,17.22,19.63,30.24,34.49,40.84,70.5) y2 = (17.14,14.26,15.71,25.08,22.85,23.61,23.5) d = [] for i in range(0, len(y2)): sum = y1[i] + y2[i] d.append(sum) y3 = (30.3,39.8,32.97,22.9,20,20.45,6) d2 = [] for i in range(0, len(y2)): sum = y1[i] + y2[i] +y3[i] d2.append(sum) y4=(28.36,19.82,24.49,12.98,12.94,10,0) d3 = [] for i in range(0, len(y2)): sum = y1[i] + y2[i] +y3[i] +y4[i] d3.append(sum) y5=(9.2,8.9,7.2,8.8,9.72,5.1,0) # menStd = (2, 3, 4, 1, 2) # womenStd = (3, 5, 2, 3, 3) x = (1,2,3,4,5,6,7) # the x locations for the groups width = 0.35 # the width of the bars: can also be len(x) sequence p1 = plt.barh(x, y1, width, color='#d62728') # , yerr=menStd) p2 = plt.barh(x, y2, width, left=y1) # , yerr=womenStd) p3 = plt.barh(x, y3, width, left=d) p4= plt.barh(x, y4, width, left=d2) p5= plt.barh(x, y5, width, left=d3,color='#7B7B7B') plt.xlabel('位置精度区间分布(%)') plt.ylabel('定位方式') #plt.title('Scores by group and gender') plt.yticks(x, ('百度 _G','腾讯 _G','高德 _G','百度 _S','腾讯 _S','高德 _S','所提方法')) plt.xticks(np.arange(0, 110, 10)) plt.grid(which='major',axis='x',linestyle='dotted') #plt.legend((p1[0], p2[0], p3[0],p4[0], p5[0]), ('[0,50 m]', '(50 m, 200 m]', '(200 m, 500 m]','(500 m, 1000 m]','(1000 m, ∞)')) plt.legend((p1[0], p2[0], p3[0],p4[0], p5[0]), ('[0,50 m]', '(50 m, 200 m]', '(200 m, 500 m]','(500 m, 1000 m]','(1000 m, ∞)'),ncol=5,bbox_to_anchor=(0.5, -0.1), loc=8, borderaxespad=-3,frameon=False,handlelength=0.7) plt.show() fig.savefig('jingdu81.jpg',bbox_inches='tight')
最后
以上就是瘦瘦导师最近收集整理的关于【Python_绘图】堆积柱形图成图效果 涉及内容重要参考完整代码的全部内容,更多相关【Python_绘图】堆积柱形图成图效果 涉及内容重要参考完整代码内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复