MDIO 接口Verilog 代码
支持 clause 22 标准
其中start 标志至少需要保持两个mdc时钟,可以参考后面的仿真文件
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265module MDIO ( input rst, input clk, output reg mdc, inout mdio, input start , //开始传输标志 高电平有效,结束传输后拉低 input [1:0] opcode , input [4:0] phy_addr , //phy address input [4:0] reg_addr , //phy register address input [15:0] write_data , //write smi data output reg [15:0] phy_reg , //read smi data output reg transfer_end //write or read finished ); reg mdio_oe,mdio_out; wire mdio_in; assign mdio = mdio_oe ? mdio_out : 1'bz ;// MDIO数据输出或高阻, 0-READ,1-WRITE assign mdio_in = mdio; //产生MDC 时钟 parameter NUM=49; //50M/100=500k reg [5:0] cnt; always @(posedge clk or negedge rst) begin if(!rst) begin cnt<=0; mdc<=0; end else if (cnt==NUM) begin cnt<=0; mdc<=mdc+1; end else begin cnt<=cnt+1; end end //数据流,上升沿有效 parameter preamble=8'b00000001; parameter st= 8'b00000010; parameter op= 8'b00000100; parameter phyad= 8'b00001000; parameter regad= 8'b00010000; parameter ta= 8'b00100000; parameter data= 8'b01000000; parameter idle= 8'b10000000; //检测上升沿,产生开始传输脉冲 reg start_next; wire start_edge; always @(posedge mdc or negedge rst) begin if(!rst) begin start_next<=0; end else start_next<=start; end assign start_edge=!start_next & start; //状态转移 reg [7:0] state,state_next; always @(posedge mdc or negedge rst ) begin if(!rst) begin state<=idle; end else if(start_edge) begin state<=preamble; end else state<=state_next; end //接口数据缓存 reg [1:0] st_code; //mdio start code reg [1:0] ta_code ; //mdio write code reg [1:0] op_code; reg [4:0] regaddr; reg [4:0] phyaddr; reg [15:0] writedata; reg [7:0] counter; always @(posedge mdc or negedge rst) begin if(!rst) begin counter<=0; end else if(counter==64) begin counter<=0; transfer_end<=1; end else if(state!=idle) begin transfer_end<=0; counter<=counter+1; end end always @(negedge mdc) begin state_next<=state; case(state) preamble: begin st_code<= 2'b01 ; ta_code<= 2'b10 ; op_code<=opcode;//缓存 regaddr<=reg_addr; phyaddr<=phy_addr; writedata<=write_data; mdio_oe<=1; mdio_out<=1; if(counter==31) begin state_next<=st; end end st: begin mdio_oe<=1; mdio_out<=st_code[1]; st_code<=st_code<<1; if(counter==33) begin state_next<=op; end end op: begin mdio_oe<=1; mdio_out<=op_code[1]; op_code<=op_code<<1; if(counter==35) begin state_next<=phyad; end end phyad: begin mdio_oe<=1; mdio_out<=phyaddr[4]; phyaddr<=phyaddr<<1; if(counter==40) begin state_next<=regad; end end regad: begin mdio_oe<=1; mdio_out<=regaddr[4]; regaddr<=regaddr<<1; if(counter==45) begin state_next<=ta; end end ta: begin if(opcode==2'b10) begin mdio_oe<=0; if(counter==47) begin state_next<=data; end end if(opcode==2'b01) begin mdio_oe<=1; mdio_out<=ta_code[1]; ta_code<=ta_code<<1; if(counter==47) begin state_next<=data; end end end data: begin if(opcode==2'b10)//读取 begin mdio_oe<=0; //读取放到外面; if(counter==63) begin state_next<=idle; end end if(opcode==2'b01)//写入 begin mdio_oe<=1; mdio_out<=writedata[15]; writedata<=writedata<<1; if(counter==63) begin state_next<=idle; end end end idle: begin mdio_oe<=0; if(counter==64) begin state_next<=idle; end end default: begin state_next<=idle; end endcase end //读取数据 always @(posedge mdc or negedge rst ) begin if(!rst) begin phy_reg<=0; end else if(state_next==data ) begin phy_reg<={phy_reg[14:0],mdio_in}; end else phy_reg<=phy_reg; end endmodule
仿真文件
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138`timescale 1 ns / 1 ps module tb; reg clk; reg rst; wire mdc; wire mdio; reg start ; //开始传输标志 高电平有效,结束传输后拉低 reg [1:0] opcode ; reg [4:0] phy_addr ; //phy address reg [4:0] reg_addr ; //phy register address reg [15:0] write_data ; //write smi data wire [15:0] phy_reg ; //read smi data wire transfer_end ; //write or read finished initial begin rst=0; start=0; phy_addr=5'b10101; reg_addr=5'b01010; opcode=2'b01; //10 读取 01 写入 write_data=16'h5a5a; // mdio_data=16'ha5a5; #10 rst=1; clk=1; #80 start=1; #150000 start=0; #4000 start=1; #150000 start=0; #4000 start=1; #150000 start=0; end always #10 clk<=~clk; //读取逻辑验证 //reg [15:0] mdio_data; //reg mdio_out; //reg mdio_en; // //assign mdio=mdio_en ? mdio_out : 1'bz; //reg [7:0] counter; //always @(posedge mdc or negedge rst) //begin // if(!rst) // begin // counter<=0; // end // else if(start) // if(counter==64) // counter<=0; // else // counter <=counter+1; // else // counter<=0; // //end //always @(negedge mdc) //begin // case(counter) // 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64: // begin // mdio_en<=1; // mdio_out<=mdio_data[15]; // mdio_data<={mdio_data[14:0],1'b0}; // end // endcase //end MDIO MDIO_INST ( .rst(rst), .clk(clk), .mdc(mdc), .mdio(mdio), .start (start) , //开始传输标志 高电平有效,结束传输后拉低 .opcode (opcode) , .phy_addr (phy_addr) , //phy address .reg_addr (reg_addr) , //phy register address .write_data (write_data), //write smi data .phy_reg (phy_reg) , //read smi data .transfer_end (transfer_end) //write or read finished ); endmodule
最后
以上就是激动河马最近收集整理的关于MDIO接口FPGA代码MDIO 接口Verilog 代码的全部内容,更多相关MDIO接口FPGA代码MDIO内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复