早在2017年8月,OpenCV 3.3正式发布,带来了高度改进的“深度神经网络”(dnn)模块。
该模块支持许多深度学习框架,包括Caffe,TensorFlow和Torch / PyTorch。
dnn模块的主要贡献者Aleksandr Rybnikov已经投入了大量的工作来使这个模块成为可能。
自从OpenCV 3.3发布以来,有一些深度学习的OpenCV教程。然后在opencv中包含了深度学习高准确度的人脸识别器,可能不时广泛的为人所熟知,但是效果却好的惊人。这么好玩,不要顾着激动,赶紧玩起来啊。
当使用OpenCV的深度神经网络模块和Caffe模型时,需要两组文件:
定义模型体系结构的.prototxt文件(即层本身)
.caffemodel文件,包含实际图层的权重
当使用使用Caffe训练的模型进行深度学习时,这两个文件都是必需的。
但是,只能在GitHub仓库中找到原型文件。
权重文件不包含在OpenCV示例目录中,需要更多挖掘才能找到它们...
OpenCV的深度学习面部检测器基于具有ResNet基础网络的单次检测(SSD)框架(与已有的其他OpenCV SSD不同,它通常使用MobileNet作为基础网络)。
应用opencv人脸检测器检测单张图像
detect_faces.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59# import the necessary packages import numpy as np import argparse import cv2 # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True, help="path to input image") ap.add_argument("-p", "--prototxt", required=True, help="path to Caffe 'deploy' prototxt file") ap.add_argument("-m", "--model", required=True, help="path to Caffe pre-trained model") ap.add_argument("-c", "--confidence", type=float, default=0.5, help="minimum probability to filter weak detections") args = vars(ap.parse_args()) # load our serialized model from disk print("[INFO] loading model...") net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"]) # load the input image and construct an input blob for the image # by resizing to a fixed 300x300 pixels and then normalizing it image = cv2.imread(args["image"]) (h, w) = image.shape[:2] blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0)) # pass the blob through the network and obtain the detections and # predictions print("[INFO] computing object detections...") net.setInput(blob) detections = net.forward() # loop over the detections for i in range(0, detections.shape[2]): # extract the confidence (i.e., probability) associated with the # prediction confidence = detections[0, 0, i, 2] # filter out weak detections by ensuring the `confidence` is # greater than the minimum confidence if confidence > args["confidence"]: # compute the (x, y)-coordinates of the bounding box for the # object box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") # draw the bounding box of the face along with the associated # probability text = "{:.2f}%".format(confidence * 100) y = startY - 10 if startY - 10 > 10 else startY + 10 cv2.rectangle(image, (startX, startY), (endX, endY), (0, 0, 255), 2) cv2.putText(image, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2) # show the output image cv2.imshow("Output", image) cv2.waitKey(0)
run
1
2$ python detect_faces.py --image rooster.jpg --prototxt deploy.prototxt.txt --model res10_300x300_ssd_iter_140000.caffemodel
输出带有检测框和置信度的人脸检测结果,可以检测多张人脸。OpenCV的Haar级联因缺少“直接”角度的面孔而效果不佳,但通过使用OpenCV的深度学习面部探测器,我们能够检测到我的脸部。
人脸检测器检测视频或者摄像头中的数据流
detect_faces_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76# import the necessary packages from imutils.video import VideoStream import numpy as np import argparse import imutils import time import cv2 # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-p", "--prototxt", required=True, help="path to Caffe 'deploy' prototxt file") ap.add_argument("-m", "--model", required=True, help="path to Caffe pre-trained model") ap.add_argument("-c", "--confidence", type=float, default=0.5, help="minimum probability to filter weak detections") args = vars(ap.parse_args()) # load our serialized model from disk print("[INFO] loading model...") net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"]) # initialize the video stream and allow the camera sensor to warm up print("[INFO] starting video stream...") vs = VideoStream(src=0).start() time.sleep(2.0) # loop over the frames from the video stream while True: # grab the frame from the threaded video stream and resize it # to have a maximum width of 400 pixels frame = vs.read() frame = imutils.resize(frame, width=400) # grab the frame dimensions and convert it to a blob (h, w) = frame.shape[:2] blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0)) # pass the blob through the network and obtain the detections and # predictions net.setInput(blob) detections = net.forward() # loop over the detections for i in range(0, detections.shape[2]): # extract the confidence (i.e., probability) associated with the # prediction confidence = detections[0, 0, i, 2] # filter out weak detections by ensuring the `confidence` is # greater than the minimum confidence if confidence < args["confidence"]: continue # compute the (x, y)-coordinates of the bounding box for the # object box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") # draw the bounding box of the face along with the associated # probability text = "{:.2f}%".format(confidence * 100) y = startY - 10 if startY - 10 > 10 else startY + 10 cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 0, 255), 2) cv2.putText(frame, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2) # show the output frame cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF # if the `q` key was pressed, break from the loop if key == ord("q"): break # do a bit of cleanup cv2.destroyAllWindows() vs.stop()
这里默认了已经具备python和DL的基础,代码层面直接读懂应该没有问题的,就不费时说明了。
run
1
2$ python detect_faces_video.py --prototxt deploy.prototxt.txt --model res10_300x300_ssd_iter_140000.caffemodel
总结
这里给出一个一个比较友好的opencv人脸检测器的实例。
OpenCV库 中带有更精确的人脸检测器(与OpenCV的Haar级联相比)。
更精确的OpenCV人脸检测器是基于深度学习的,特别是利用ResNet检测器(SSD)框架和ResNet作为基础网络。
受益于Aleksandr Rybnikov和OpenCV的dnn模块的其他贡献者。
最后
以上就是炙热乌龟最近收集整理的关于opencv+deep-learning实现人脸识别的全部内容,更多相关opencv+deep-learning实现人脸识别内容请搜索靠谱客的其他文章。
发表评论 取消回复