我是靠谱客的博主 辛勤热狗,这篇文章主要介绍关于TF(词频) 和TF-IDF(词频-逆向文件频率 )的理解,现在分享给大家,希望可以做个参考。

 ##TF-IDF

TF(词频):  假定存在一份有N个词的文件A,其中‘明星‘这个词出现的次数为T。那么 TF = T/N;

所以表示为: 某一个词在某一个文件中出现的频率.

 

TF-IDF(词频-逆向文件频率):  表示的词频和逆向文件频率的乘积.

比如:  假定存在一份有N个词的文件A,其中‘明星‘这个词出现的次数为T。那么 TF = T/N;  并且‘明星’这个词,在W份文件中出现,而总共有X份文件,那么

IDF = log(X/W) ;

而: TF-IDF =  TF *  IDF = T/N * log(X/W);   我们发现,‘明星’,这个出现在W份文件,W越小 TF-IDF越大,也就是这个词越有可能是该文档的关键字,而不是习惯词(类似于:‘的’,‘是’,‘不是’这些词),

而TF越大,说明这个词在文档中的信息量越大.

 

最后

以上就是辛勤热狗最近收集整理的关于关于TF(词频) 和TF-IDF(词频-逆向文件频率 )的理解的全部内容,更多相关关于TF(词频)内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(107)

评论列表共有 0 条评论

立即
投稿
返回
顶部