1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769作者:Kwan_SS 链接:http://www.jianshu.com/p/6677247f05b4 來源:简书 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。数据总览
![]()
![]()
Detection Results: VOC2012 intro: Competition “comp4” (train on additional data) homepage: http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4
Papers Deep Neural Networks for Object Detection paper: http://papers.nips.cc/paper/5207-deep-neural-networks-for-object-detection.pdf
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks arxiv: http://arxiv.org/abs/1312.6229 github: https://github.com/sermanet/OverFeat code: http://cilvr.nyu.edu/doku.php?id=software:overfeat:start
R-CNN Rich feature hierarchies for accurate object detection and semantic segmentation intro: R-CNN arxiv: http://arxiv.org/abs/1311.2524 supp: http://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr-supp.pdf slides: http://www.image-net.org/challenges/LSVRC/2013/slides/r-cnn-ilsvrc2013-workshop.pdf slides: http://www.cs.berkeley.edu/~rbg/slides/rcnn-cvpr14-slides.pdf github: https://github.com/rbgirshick/rcnn notes: http://zhangliliang.com/2014/07/23/paper-note-rcnn/ caffe-pr(“Make R-CNN the Caffe detection example”): https://github.com/BVLC/caffe/pull/482
Fast R-CNN Fast R-CNN arxiv: http://arxiv.org/abs/1504.08083 slides: http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf github: https://github.com/rbgirshick/fast-rcnn github(COCO-branch): https://github.com/rbgirshick/fast-rcnn/tree/coco webcam demo: https://github.com/rbgirshick/fast-rcnn/pull/29 notes: http://zhangliliang.com/2015/05/17/paper-note-fast-rcnn/ notes: http://blog.csdn.net/linj_m/article/details/48930179 github(“Fast R-CNN in MXNet”): https://github.com/precedenceguo/mx-rcnn github: https://github.com/mahyarnajibi/fast-rcnn-torch github: https://github.com/apple2373/chainer-simple-fast-rnn github: https://github.com/zplizzi/tensorflow-fast-rcnn
A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection intro: CVPR 2017 arxiv: https://arxiv.org/abs/1704.03414 paper: http://abhinavsh.info/papers/pdfs/adversarial_object_detection.pdf github(Caffe): https://github.com/xiaolonw/adversarial-frcnn
Faster R-CNN Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks intro: NIPS 2015 arxiv: http://arxiv.org/abs/1506.01497 gitxiv: http://www.gitxiv.com/posts/8pfpcvefDYn2gSgXk/faster-r-cnn-towards-real-time-object-detection-with-region slides: http://web.cs.hacettepe.edu.tr/~aykut/classes/spring2016/bil722/slides/w05-FasterR-CNN.pdf github(official, Matlab): https://github.com/ShaoqingRen/faster_rcnn github: https://github.com/rbgirshick/py-faster-rcnn github: https://github.com/mitmul/chainer-faster-rcnn github: https://github.com/andreaskoepf/faster-rcnn.torch github: https://github.com/ruotianluo/Faster-RCNN-Densecap-torch github: https://github.com/smallcorgi/Faster-RCNN_TF github: https://github.com/CharlesShang/TFFRCNN github(C++ demo): https://github.com/YihangLou/FasterRCNN-Encapsulation-Cplusplus github: https://github.com/yhenon/keras-frcnn
Faster R-CNN in MXNet with distributed implementation and data parallelization github: https://github.com/dmlc/mxnet/tree/master/example/rcnn
Contextual Priming and Feedback for Faster R-CNN intro: ECCV 2016. Carnegie Mellon University paper: http://abhinavsh.info/context_priming_feedback.pdf poster: http://www.eccv2016.org/files/posters/P-1A-20.pdf
An Implementation of Faster RCNN with Study for Region Sampling intro: Technical Report, 3 pages. CMU arxiv: https://arxiv.org/abs/1702.02138 github: https://github.com/endernewton/tf-faster-rcnn
MultiBox Scalable Object Detection using Deep Neural Networks intro: first MultiBox. Train a CNN to predict Region of Interest. arxiv: http://arxiv.org/abs/1312.2249 github: https://github.com/google/multibox blog: https://research.googleblog.com/2014/12/high-quality-object-detection-at-scale.html
Scalable, High-Quality Object Detection intro: second MultiBox arxiv: http://arxiv.org/abs/1412.1441 github: https://github.com/google/multibox
SPP-Net Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition intro: ECCV 2014 / TPAMI 2015 arxiv: http://arxiv.org/abs/1406.4729 github: https://github.com/ShaoqingRen/SPP_net notes: http://zhangliliang.com/2014/09/13/paper-note-sppnet/
DeepID-Net DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection intro: PAMI 2016 intro: an extension of R-CNN. box pre-training, cascade on region proposals, deformation layers and context representations project page: http://www.ee.cuhk.edu.hk/%CB%9Cwlouyang/projects/imagenetDeepId/index.html arxiv: http://arxiv.org/abs/1412.5661
Object Detectors Emerge in Deep Scene CNNs intro: ICLR 2015 arxiv: http://arxiv.org/abs/1412.6856 paper: https://www.robots.ox.ac.uk/~vgg/rg/papers/zhou_iclr15.pdf paper: https://people.csail.mit.edu/khosla/papers/iclr2015_zhou.pdf slides: http://places.csail.mit.edu/slide_iclr2015.pdf
segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection intro: CVPR 2015 project(code+data): https://www.cs.toronto.edu/~yukun/segdeepm.html arxiv: https://arxiv.org/abs/1502.04275 github: https://github.com/YknZhu/segDeepM
NoC Object Detection Networks on Convolutional Feature Maps intro: TPAMI 2015 arxiv: http://arxiv.org/abs/1504.06066
Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction arxiv: http://arxiv.org/abs/1504.03293 slides: http://www.ytzhang.net/files/publications/2015-cvpr-det-slides.pdf github: https://github.com/YutingZhang/fgs-obj
DeepBox DeepBox: Learning Objectness with Convolutional Networks arxiv: http://arxiv.org/abs/1505.02146 github: https://github.com/weichengkuo/DeepBox
MR-CNN Object detection via a multi-region & semantic segmentation-aware CNN model intro: ICCV 2015. MR-CNN arxiv: http://arxiv.org/abs/1505.01749 github: https://github.com/gidariss/mrcnn-object-detection notes: http://zhangliliang.com/2015/05/17/paper-note-ms-cnn/ notes: http://blog.cvmarcher.com/posts/2015/05/17/multi-region-semantic-segmentation-aware-cnn/
YOLO You Only Look Once: Unified, Real-Time Object Detection
![]()
arxiv: http://arxiv.org/abs/1506.02640 code: http://pjreddie.com/darknet/yolo/ github: https://github.com/pjreddie/darknet blog: https://pjreddie.com/publications/yolo/ slides: https://docs.google.com/presentation/d/1aeRvtKG21KHdD5lg6Hgyhx5rPq_ZOsGjG5rJ1HP7BbA/pub?start=false&loop=false&delayms=3000&slide=id.p reddit: https://www.reddit.com/r/MachineLearning/comments/3a3m0o/realtime_object_detection_with_yolo/ github: https://github.com/gliese581gg/YOLO_tensorflow github: https://github.com/xingwangsfu/caffe-yolo github: https://github.com/frankzhangrui/Darknet-Yolo github: https://github.com/BriSkyHekun/py-darknet-yolo github: https://github.com/tommy-qichang/yolo.torch github: https://github.com/frischzenger/yolo-windows github: https://github.com/AlexeyAB/yolo-windows github: https://github.com/nilboy/tensorflow-yolo
darkflow - translate darknet to tensorflow. Load trained weights, retrain/fine-tune them using tensorflow, export constant graph def to C++ blog: https://thtrieu.github.io/notes/yolo-tensorflow-graph-buffer-cpp github: https://github.com/thtrieu/darkflow
Start Training YOLO with Our Own Data
![]()
intro: train with customized data and class numbers/labels. Linux / Windows version for darknet. blog: http://guanghan.info/blog/en/my-works/train-yolo/ github: https://github.com/Guanghan/darknet
YOLO: Core ML versus MPSNNGraph intro: Tiny YOLO for iOS implemented using CoreML but also using the new MPS graph API. blog: http://machinethink.net/blog/yolo-coreml-versus-mps-graph/ github: https://github.com/hollance/YOLO-CoreML-MPSNNGraph
TensorFlow YOLO object detection on Android intro: Real-time object detection on Android using the YOLO network with TensorFlow github: https://github.com/natanielruiz/android-yolo
YOLOv2 YOLO9000: Better, Faster, Stronger arxiv: https://arxiv.org/abs/1612.08242 code: http://pjreddie.com/yolo9000/ github(Chainer): https://github.com/leetenki/YOLOv2 github(Keras): https://github.com/allanzelener/YAD2K github(PyTorch): https://github.com/longcw/yolo2-pytorch github(Tensorflow): https://github.com/hizhangp/yolo_tensorflow github(Windows): https://github.com/AlexeyAB/darknet github: https://github.com/choasUp/caffe-yolo9000
Yolo_mark: GUI for marking bounded boxes of objects in images for training Yolo v2 github: https://github.com/AlexeyAB/Yolo_mark
R-CNN minus R arxiv: http://arxiv.org/abs/1506.06981
AttentionNet AttentionNet: Aggregating Weak Directions for Accurate Object Detection intro: ICCV 2015 intro: state-of-the-art performance of 65% (AP) on PASCAL VOC 2007/2012 human detection task arxiv: http://arxiv.org/abs/1506.07704 slides: https://www.robots.ox.ac.uk/~vgg/rg/slides/AttentionNet.pdf slides: http://image-net.org/challenges/talks/lunit-kaist-slide.pdf
DenseBox DenseBox: Unifying Landmark Localization with End to End Object Detection arxiv: http://arxiv.org/abs/1509.04874 demo: http://pan.baidu.com/s/1mgoWWsS KITTI result: http://www.cvlibs.net/datasets/kitti/eval_object.php
SSD SSD: Single Shot MultiBox Detector
![]()
intro: ECCV 2016 Oral arxiv: http://arxiv.org/abs/1512.02325 paper: http://www.cs.unc.edu/~wliu/papers/ssd.pdf slides: http://www.cs.unc.edu/%7Ewliu/papers/ssd_eccv2016_slide.pdf github(Official): https://github.com/weiliu89/caffe/tree/ssd video: http://weibo.com/p/2304447a2326da963254c963c97fb05dd3a973 github: https://github.com/zhreshold/mxnet-ssd github: https://github.com/zhreshold/mxnet-ssd.cpp github: https://github.com/rykov8/ssd_keras github: https://github.com/balancap/SSD-Tensorflow github: https://github.com/amdegroot/ssd.pytorch
What’s the diffience in performance between this new code you pushed and the previous code? #327 https://github.com/weiliu89/caffe/issues/327 Enhancement of SSD by concatenating feature maps for object detection intro: rainbow SSD (R-SSD) arxiv: https://arxiv.org/abs/1705.09587
DSSD DSSD : Deconvolutional Single Shot Detector intro: UNC Chapel Hill & Amazon Inc arxiv: https://arxiv.org/abs/1701.06659
Inside-Outside Net (ION) Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks intro: “0.8s per image on a Titan X GPU (excluding proposal generation) without two-stage bounding-box regression and 1.15s per image with it”. arxiv: http://arxiv.org/abs/1512.04143 slides: http://www.seanbell.ca/tmp/ion-coco-talk-bell2015.pdf coco-leaderboard: http://mscoco.org/dataset/#detections-leaderboard
Adaptive Object Detection Using Adjacency and Zoom Prediction intro: CVPR 2016. AZ-Net arxiv: http://arxiv.org/abs/1512.07711 github: https://github.com/luyongxi/az-net youtube: https://www.youtube.com/watch?v=YmFtuNwxaNM
G-CNN G-CNN: an Iterative Grid Based Object Detector arxiv: http://arxiv.org/abs/1512.07729
Factors in Finetuning Deep Model for object detection Factors in Finetuning Deep Model for Object Detection with Long-tail Distribution intro: CVPR 2016.rank 3rd for provided data and 2nd for external data on ILSVRC 2015 object detection project page: http://www.ee.cuhk.edu.hk/~wlouyang/projects/ImageNetFactors/CVPR16.html arxiv: http://arxiv.org/abs/1601.05150
We don’t need no bounding-boxes: Training object class detectors using only human verification arxiv: http://arxiv.org/abs/1602.08405
HyperNet HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection arxiv: http://arxiv.org/abs/1604.00600
MultiPathNet A MultiPath Network for Object Detection intro: BMVC 2016. Facebook AI Research (FAIR) arxiv: http://arxiv.org/abs/1604.02135 github: https://github.com/facebookresearch/multipathnet
CRAFT CRAFT Objects from Images intro: CVPR 2016. Cascade Region-proposal-network And FasT-rcnn. an extension of Faster R-CNN project page: http://byangderek.github.io/projects/craft.html arxiv: https://arxiv.org/abs/1604.03239 paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yang_CRAFT_Objects_From_CVPR_2016_paper.pdf github: https://github.com/byangderek/CRAFT
OHEM Training Region-based Object Detectors with Online Hard Example Mining intro: CVPR 2016 Oral. Online hard example mining (OHEM) arxiv: http://arxiv.org/abs/1604.03540 paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Shrivastava_Training_Region-Based_Object_CVPR_2016_paper.pdf github(Official): https://github.com/abhi2610/ohem author page: http://abhinav-shrivastava.info/
Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers intro: CVPR 2016 keywords: scale-dependent pooling (SDP), cascaded rejection classifiers (CRC) paper: http://www-personal.umich.edu/~wgchoi/SDP-CRC_camready.pdf
R-FCN R-FCN: Object Detection via Region-based Fully Convolutional Networks arxiv: http://arxiv.org/abs/1605.06409 github: https://github.com/daijifeng001/R-FCN github: https://github.com/Orpine/py-R-FCN github: https://github.com/PureDiors/pytorch_RFCN github: https://github.com/bharatsingh430/py-R-FCN-multiGPU github: https://github.com/xdever/RFCN-tensorflow
Recycle deep features for better object detection arxiv: http://arxiv.org/abs/1607.05066
MS-CNN A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection intro: ECCV 2016 intro: 640×480: 15 fps, 960×720: 8 fps arxiv: http://arxiv.org/abs/1607.07155 github: https://github.com/zhaoweicai/mscnn poster: http://www.eccv2016.org/files/posters/P-2B-38.pdf
Multi-stage Object Detection with Group Recursive Learning intro: VOC2007: 78.6%, VOC2012: 74.9% arxiv: http://arxiv.org/abs/1608.05159
Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection intro: WACV 2017. SubCNN arxiv: http://arxiv.org/abs/1604.04693 github: https://github.com/tanshen/SubCNN
PVANET PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection intro: “less channels with more layers”, concatenated ReLU, Inception, and HyperNet, batch normalization, residual connections arxiv: http://arxiv.org/abs/1608.08021 github: https://github.com/sanghoon/pva-faster-rcnn leaderboard(PVANet 9.0): http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4
PVANet: Lightweight Deep Neural Networks for Real-time Object Detection intro: Presented at NIPS 2016 Workshop on Efficient Methods for Deep Neural Networks (EMDNN). Continuation of arXiv:1608.08021 arxiv: https://arxiv.org/abs/1611.08588
GBD-Net Gated Bi-directional CNN for Object Detection intro: The Chinese University of Hong Kong & Sensetime Group Limited paper: http://link.springer.com/chapter/10.1007/978-3-319-46478-7_22 mirror: https://pan.baidu.com/s/1dFohO7v
Crafting GBD-Net for Object Detection intro: winner of the ImageNet object detection challenge of 2016. CUImage and CUVideo intro: gated bi-directional CNN (GBD-Net) arxiv: https://arxiv.org/abs/1610.02579 github: https://github.com/craftGBD/craftGBD
StuffNet StuffNet: Using ‘Stuff’ to Improve Object Detection arxiv: https://arxiv.org/abs/1610.05861
Generalized Haar Filter based Deep Networks for Real-Time Object Detection in Traffic Scene arxiv: https://arxiv.org/abs/1610.09609
Hierarchical Object Detection with Deep Reinforcement Learning intro: Deep Reinforcement Learning Workshop (NIPS 2016) project page: https://imatge-upc.github.io/detection-2016-nipsws/ arxiv: https://arxiv.org/abs/1611.03718 slides: http://www.slideshare.net/xavigiro/hierarchical-object-detection-with-deep-reinforcement-learning github: https://github.com/imatge-upc/detection-2016-nipsws blog: http://jorditorres.org/nips/
Learning to detect and localize many objects from few examples arxiv: https://arxiv.org/abs/1611.05664
Speed/accuracy trade-offs for modern convolutional object detectors intro: Google Research arxiv: https://arxiv.org/abs/1611.10012
SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving arxiv: https://arxiv.org/abs/1612.01051 github: https://github.com/BichenWuUCB/squeezeDet
Feature Pyramid Network (FPN) Feature Pyramid Networks for Object Detection intro: Facebook AI Research arxiv: https://arxiv.org/abs/1612.03144
Action-Driven Object Detection with Top-Down Visual Attentions arxiv: https://arxiv.org/abs/1612.06704
Beyond Skip Connections: Top-Down Modulation for Object Detection intro: CMU & UC Berkeley & Google Research arxiv: https://arxiv.org/abs/1612.06851
Wide-Residual-Inception Networks for Real-time Object Detection intro: Inha University arxiv: https://arxiv.org/abs/1702.01243
Attentional Network for Visual Object Detection intro: University of Maryland & Mitsubishi Electric Research Laboratories arxiv: https://arxiv.org/abs/1702.01478
CC-Net Learning Chained Deep Features and Classifiers for Cascade in Object Detection intro: chained cascade network (CC-Net). 81.1% mAP on PASCAL VOC 2007 arxiv: https://arxiv.org/abs/1702.07054
DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling https://arxiv.org/abs/1703.10295 Discriminative Bimodal Networks for Visual Localization and Detection with Natural Language Queries intro: CVPR 2017 arxiv: https://arxiv.org/abs/1704.03944
Spatial Memory for Context Reasoning in Object Detection arxiv: https://arxiv.org/abs/1704.04224
Accurate Single Stage Detector Using Recurrent Rolling Convolution intro: CVPR 2017. SenseTime keywords: Recurrent Rolling Convolution (RRC) arxiv: https://arxiv.org/abs/1704.05776 github: https://github.com/xiaohaoChen/rrc_detection
Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection https://arxiv.org/abs/1704.05775 S-OHEM: Stratified Online Hard Example Mining for Object Detection https://arxiv.org/abs/1705.02233 LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems intro: Embedded Vision Workshop in CVPR. UC San Diego & Qualcomm Inc arxiv: https://arxiv.org/abs/1705.05922
Point Linking Network for Object Detection intro: Point Linking Network (PLN) arxiv: https://arxiv.org/abs/1706.03646
Perceptual Generative Adversarial Networks for Small Object Detection https://arxiv.org/abs/1706.05274 Few-shot Object Detection https://arxiv.org/abs/1706.08249 SMC Faster R-CNN: Toward a scene-specialized multi-object detector https://arxiv.org/abs/1706.10217 Towards lightweight convolutional neural networks for object detection https://arxiv.org/abs/1707.01395 RON: Reverse Connection with Objectness Prior Networks for Object Detection intro: CVPR 2017 arxiv: https://arxiv.org/abs/1707.01691 github: https://github.com/taokong/RON
NMS End-to-End Integration of a Convolutional Network, Deformable Parts Model and Non-Maximum Suppression intro: CVPR 2015 arxiv: http://arxiv.org/abs/1411.5309 paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wan_End-to-End_Integration_of_2015_CVPR_paper.pdf
A convnet for non-maximum suppression arxiv: http://arxiv.org/abs/1511.06437
Improving Object Detection With One Line of Code intro: University of Maryland keywords: Soft-NMS arxiv: https://arxiv.org/abs/1704.04503 github: https://github.com/bharatsingh430/soft-nms
Learning non-maximum suppression https://arxiv.org/abs/1705.02950 Weakly Supervised Object Detection Track and Transfer: Watching Videos to Simulate Strong Human Supervision for Weakly-Supervised Object Detection intro: CVPR 2016 arxiv: http://arxiv.org/abs/1604.05766
Weakly supervised object detection using pseudo-strong labels arxiv: http://arxiv.org/abs/1607.04731
Saliency Guided End-to-End Learning for Weakly Supervised Object Detection intro: IJCAI 2017 arxiv: https://arxiv.org/abs/1706.06768
Detection From Video **Learning Object Class Detectors from Weakly Annotated Video intro: CVPR 2012 paper: https://www.vision.ee.ethz.ch/publications/papers/proceedings/eth_biwi_00905.pdf
Analysing domain shift factors between videos and images for object detection arxiv: https://arxiv.org/abs/1501.01186
Video Object Recognition slides: http://vision.princeton.edu/courses/COS598/2015sp/slides/VideoRecog/Video%20Object%20Recognition.pptx
Deep Learning for Saliency Prediction in Natural Video intro: Submitted on 12 Jan 2016 keywords: Deep learning, saliency map, optical flow, convolution network, contrast features paper: https://hal.archives-ouvertes.fr/hal-01251614/document
T-CNN T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos intro: Winning solution in ILSVRC2015 Object Detection from Video(VID) Task arxiv: http://arxiv.org/abs/1604.02532 github: https://github.com/myfavouritekk/T-CNN
Object Detection from Video Tubelets with Convolutional Neural Networks intro: CVPR 2016 Spotlight paper arxiv: https://arxiv.org/abs/1604.04053 paper: http://www.ee.cuhk.edu.hk/~wlouyang/Papers/KangVideoDet_CVPR16.pdf gihtub: https://github.com/myfavouritekk/vdetlib
Object Detection in Videos with Tubelets and Multi-context Cues intro: SenseTime Group slides: http://www.ee.cuhk.edu.hk/~xgwang/CUvideo.pdf slides: http://image-net.org/challenges/talks/Object%20Detection%20in%20Videos%20with%20Tubelets%20and%20Multi-context%20Cues%20-%20Final.pdf
Context Matters: Refining Object Detection in Video with Recurrent Neural Networks intro: BMVC 2016 keywords: pseudo-labeler arxiv: http://arxiv.org/abs/1607.04648 paper: http://vision.cornell.edu/se3/wp-content/uploads/2016/07/video_object_detection_BMVC.pdf
CNN Based Object Detection in Large Video Images intro: WangTao @ 爱奇艺 keywords: object retrieval, object detection, scene classification slides: http://on-demand.gputechconf.com/gtc/2016/presentation/s6362-wang-tao-cnn-based-object-detection-large-video-images.pdf
Object Detection in Videos with Tubelet Proposal Networks arxiv: https://arxiv.org/abs/1702.06355
Flow-Guided Feature Aggregation for Video Object Detection intro: MSRA arxiv: https://arxiv.org/abs/1703.10025
Video Object Detection using Faster R-CNN blog: http://andrewliao11.github.io/object_detection/faster_rcnn/ github: https://github.com/andrewliao11/py-faster-rcnn-imagenet
Object Detection in 3D **Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks arxiv: https://arxiv.org/abs/1609.06666
Object Detection on RGB-D **Learning Rich Features from RGB-D Images for Object Detection and Segmentation arxiv: http://arxiv.org/abs/1407.5736
Differential Geometry Boosts Convolutional Neural Networks for Object Detection intro: CVPR 2016 paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w23/html/Wang_Differential_Geometry_Boosts_CVPR_2016_paper.html
A Self-supervised Learning System for Object Detection using Physics Simulation and Multi-view Pose Estimation https://arxiv.org/abs/1703.03347 Salient Object Detection This task involves predicting the salient regions of an image given by human eye fixations. Best Deep Saliency Detection Models (CVPR 2016 & 2015) http://i.cs.hku.hk/~yzyu/vision.html Large-scale optimization of hierarchical features for saliency prediction in natural images** paper: http://coxlab.org/pdfs/cvpr2014_vig_saliency.pdf
Predicting Eye Fixations using Convolutional Neural Networks paper: http://www.escience.cn/system/file?fileId=72648
Saliency Detection by Multi-Context Deep Learning paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zhao_Saliency_Detection_by_2015_CVPR_paper.pdf
DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection arxiv: http://arxiv.org/abs/1510.05484
SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection paper: www.shengfenghe.com/supercnn-a-superpixelwise-convolutional-neural-network-for-salient-object-detection.html
Shallow and Deep Convolutional Networks for Saliency Prediction intro: CVPR 2016 arxiv: http://arxiv.org/abs/1603.00845 github: https://github.com/imatge-upc/saliency-2016-cvpr
Recurrent Attentional Networks for Saliency Detection intro: CVPR 2016. recurrent attentional convolutional-deconvolution network (RACDNN) arxiv: http://arxiv.org/abs/1604.03227
Two-Stream Convolutional Networks for Dynamic Saliency Prediction arxiv: http://arxiv.org/abs/1607.04730
Unconstrained Salient Object Detection Unconstrained Salient Object Detection via Proposal Subset Optimization
![]()
intro: CVPR 2016 project page: http://cs-people.bu.edu/jmzhang/sod.html paper: http://cs-people.bu.edu/jmzhang/SOD/CVPR16SOD_camera_ready.pdf github: https://github.com/jimmie33/SOD caffe model zoo: https://github.com/BVLC/caffe/wiki/Model-Zoo#cnn-object-proposal-models-for-salient-object-detection
DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Liu_DHSNet_Deep_Hierarchical_CVPR_2016_paper.pdf
Salient Object Subitizing
![]()
intro: CVPR 2015 intro: predicting the existence and the number of salient objects in an image using holistic cues project page: http://cs-people.bu.edu/jmzhang/sos.html arxiv: http://arxiv.org/abs/1607.07525 paper: http://cs-people.bu.edu/jmzhang/SOS/SOS_preprint.pdf caffe model zoo: https://github.com/BVLC/caffe/wiki/Model-Zoo#cnn-models-for-salient-object-subitizing
Deeply-Supervised Recurrent Convolutional Neural Network for Saliency Detection intro: ACMMM 2016. deeply-supervised recurrent convolutional neural network (DSRCNN) arxiv: http://arxiv.org/abs/1608.05177
Saliency Detection via Combining Region-Level and Pixel-Level Predictions with CNNs intro: ECCV 2016 arxiv: http://arxiv.org/abs/1608.05186
Edge Preserving and Multi-Scale Contextual Neural Network for Salient Object Detection arxiv: http://arxiv.org/abs/1608.08029
A Deep Multi-Level Network for Saliency Prediction arxiv: http://arxiv.org/abs/1609.01064
Visual Saliency Detection Based on Multiscale Deep CNN Features intro: IEEE Transactions on Image Processing arxiv: http://arxiv.org/abs/1609.02077
A Deep Spatial Contextual Long-term Recurrent Convolutional Network for Saliency Detection intro: DSCLRCN arxiv: https://arxiv.org/abs/1610.01708
Deeply supervised salient object detection with short connections arxiv: https://arxiv.org/abs/1611.04849
Weakly Supervised Top-down Salient Object Detection intro: Nanyang Technological University arxiv: https://arxiv.org/abs/1611.05345
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks project page: https://imatge-upc.github.io/saliency-salgan-2017/ arxiv: https://arxiv.org/abs/1701.01081
Visual Saliency Prediction Using a Mixture of Deep Neural Networks arxiv: https://arxiv.org/abs/1702.00372
A Fast and Compact Salient Score Regression Network Based on Fully Convolutional Network arxiv: https://arxiv.org/abs/1702.00615
Saliency Detection by Forward and Backward Cues in Deep-CNNs https://arxiv.org/abs/1703.00152 Supervised Adversarial Networks for Image Saliency Detection https://arxiv.org/abs/1704.07242 Saliency Detection in Video Deep Learning For Video Saliency Detection arxiv: https://arxiv.org/abs/1702.00871
Visual Relationship Detection **Visual Relationship Detection with Language Priors intro: ECCV 2016 oral paper: https://cs.stanford.edu/people/ranjaykrishna/vrd/vrd.pdf github: https://github.com/Prof-Lu-Cewu/Visual-Relationship-Detection
ViP-CNN: A Visual Phrase Reasoning Convolutional Neural Network for Visual Relationship Detection intro: Visual Phrase reasoning Convolutional Neural Network (ViP-CNN), Visual Phrase Reasoning Structure (VPRS) arxiv: https://arxiv.org/abs/1702.07191
Visual Translation Embedding Network for Visual Relation Detection arxiv: https://www.arxiv.org/abs/1702.08319
Deep Variation-structured Reinforcement Learning for Visual Relationship and Attribute Detection intro: CVPR 2017 spotlight paper arxiv: https://arxiv.org/abs/1703.03054
Detecting Visual Relationships with Deep Relational Networks intro: CVPR 2017 oral. The Chinese University of Hong Kong arxiv: https://arxiv.org/abs/1704.03114
Identifying Spatial Relations in Images using Convolutional Neural Networks https://arxiv.org/abs/1706.04215 Specific Object Deteciton Face Deteciton Multi-view Face Detection Using Deep Convolutional Neural Networks** intro: Yahoo arxiv: http://arxiv.org/abs/1502.02766 github: https://github.com/guoyilin/FaceDetection_CNN
From Facial Parts Responses to Face Detection: A Deep Learning Approach
![]()
intro: ICCV 2015. CUHK project page: http://personal.ie.cuhk.edu.hk/~ys014/projects/Faceness/Faceness.html arxiv: https://arxiv.org/abs/1509.06451 paper: http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yang_From_Facial_Parts_ICCV_2015_paper.pdf
Compact Convolutional Neural Network Cascade for Face Detection arxiv: http://arxiv.org/abs/1508.01292 github: https://github.com/Bkmz21/FD-Evaluation github: https://github.com/Bkmz21/CompactCNNCascade
Face Detection with End-to-End Integration of a ConvNet and a 3D Model intro: ECCV 2016 arxiv: https://arxiv.org/abs/1606.00850 github(MXNet): https://github.com/tfwu/FaceDetection-ConvNet-3D
CMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection intro: CMU arxiv: https://arxiv.org/abs/1606.05413
Finding Tiny Faces intro: CVPR 2017. CMU project page: http://www.cs.cmu.edu/~peiyunh/tiny/index.html arxiv: https://arxiv.org/abs/1612.04402 github: https://github.com/peiyunh/tiny github(inference-only): https://github.com/chinakook/hr101_mxnet
Towards a Deep Learning Framework for Unconstrained Face Detection intro: overlap with CMS-RCNN arxiv: https://arxiv.org/abs/1612.05322
Supervised Transformer Network for Efficient Face Detection arxiv: http://arxiv.org/abs/1607.05477
UnitBox UnitBox: An Advanced Object Detection Network intro: ACM MM 2016 arxiv: http://arxiv.org/abs/1608.01471
Bootstrapping Face Detection with Hard Negative Examples author: 万韶华 @ 小米. intro: Faster R-CNN, hard negative mining. state-of-the-art on the FDDB dataset arxiv: http://arxiv.org/abs/1608.02236
Grid Loss: Detecting Occluded Faces intro: ECCV 2016 arxiv: https://arxiv.org/abs/1609.00129 paper: http://lrs.icg.tugraz.at/pubs/opitz_eccv_16.pdf poster: http://www.eccv2016.org/files/posters/P-2A-34.pdf
A Multi-Scale Cascade Fully Convolutional Network Face Detector intro: ICPR 2016 arxiv: http://arxiv.org/abs/1609.03536
MTCNN Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks
project page: https://kpzhang93.github.io/MTCNN_face_detection_alignment/index.html arxiv: https://arxiv.org/abs/1604.02878 github(Matlab): https://github.com/kpzhang93/MTCNN_face_detection_alignment github: https://github.com/pangyupo/mxnet_mtcnn_face_detection github: https://github.com/DaFuCoding/MTCNN_Caffe github(MXNet): https://github.com/Seanlinx/mtcnn github: https://github.com/Pi-DeepLearning/RaspberryPi-FaceDetection-MTCNN-Caffe-With-Motion github(Caffe): https://github.com/foreverYoungGitHub/MTCNN github: https://github.com/CongWeilin/mtcnn-caffe github: https://github.com/AlphaQi/MTCNN-light
Face Detection using Deep Learning: An Improved Faster RCNN Approach intro: DeepIR Inc arxiv: https://arxiv.org/abs/1701.08289
Faceness-Net: Face Detection through Deep Facial Part Responses intro: An extended version of ICCV 2015 paper arxiv: https://arxiv.org/abs/1701.08393
Multi-Path Region-Based Convolutional Neural Network for Accurate Detection of Unconstrained “Hard Faces” intro: CVPR 2017. MP-RCNN, MP-RPN arxiv: https://arxiv.org/abs/1703.09145
End-To-End Face Detection and Recognition https://arxiv.org/abs/1703.10818 Face R-CNN https://arxiv.org/abs/1706.01061 Face Detection through Scale-Friendly Deep Convolutional Networks https://arxiv.org/abs/1706.02863 Scale-Aware Face Detection intro: CVPR 2017. SenseTime & Tsinghua University arxiv: https://arxiv.org/abs/1706.09876
Facial Point / Landmark Detection Deep Convolutional Network Cascade for Facial Point Detection
![]()
homepage: http://mmlab.ie.cuhk.edu.hk/archive/CNN_FacePoint.htm paper: http://www.ee.cuhk.edu.hk/~xgwang/papers/sunWTcvpr13.pdf github: https://github.com/luoyetx/deep-landmark
Facial Landmark Detection by Deep Multi-task Learning intro: ECCV 2014 project page: http://mmlab.ie.cuhk.edu.hk/projects/TCDCN.html paper: http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2014_deepfacealign.pdf github(Matlab): https://github.com/zhzhanp/TCDCN-face-alignment
A Recurrent Encoder-Decoder Network for Sequential Face Alignment intro: ECCV 2016 arxiv: https://arxiv.org/abs/1608.05477
Detecting facial landmarks in the video based on a hybrid framework arxiv: http://arxiv.org/abs/1609.06441
Deep Constrained Local Models for Facial Landmark Detection arxiv: https://arxiv.org/abs/1611.08657
Effective face landmark localization via single deep network arxiv: https://arxiv.org/abs/1702.02719
A Convolution Tree with Deconvolution Branches: Exploiting Geometric Relationships for Single Shot Keypoint Detection https://arxiv.org/abs/1704.01880 Deep Alignment Network: A convolutional neural network for robust face alignment intro: CVPRW 2017 arxiv: https://arxiv.org/abs/1706.01789 gihtub: https://github.com/MarekKowalski/DeepAlignmentNetwork
People Detection **End-to-end people detection in crowded scenes
![]()
arxiv: http://arxiv.org/abs/1506.04878 github: https://github.com/Russell91/reinspect ipn: http://nbviewer.ipython.org/github/Russell91/ReInspect/blob/master/evaluation_reinspect.ipynb youtube: https://www.youtube.com/watch?v=QeWl0h3kQ24
Detecting People in Artwork with CNNs intro: ECCV 2016 Workshops arxiv: https://arxiv.org/abs/1610.08871
Deep Multi-camera People Detection arxiv: https://arxiv.org/abs/1702.04593
Person Head Detection Context-aware CNNs for person head detection arxiv: http://arxiv.org/abs/1511.07917 github: https://github.com/aosokin/cnn_head_detection
Pedestrian Detection Pedestrian Detection aided by Deep Learning Semantic Tasks intro: CVPR 2015 project page: http://mmlab.ie.cuhk.edu.hk/projects/TA-CNN/ arxiv: http://arxiv.org/abs/1412.0069
Deep Learning Strong Parts for Pedestrian Detection intro: ICCV 2015. CUHK. DeepParts intro: Achieving 11.89% average miss rate on Caltech Pedestrian Dataset paper: http://personal.ie.cuhk.edu.hk/~pluo/pdf/tianLWTiccv15.pdf
Taking a Deeper Look at Pedestrians intro: CVPR 2015 arxiv: https://arxiv.org/abs/1501.05790
Convolutional Channel Features intro: ICCV 2015 arxiv: https://arxiv.org/abs/1504.07339 github: https://github.com/byangderek/CCF
Learning Complexity-Aware Cascades for Deep Pedestrian Detection intro: ICCV 2015 arxiv: https://arxiv.org/abs/1507.05348
Deep convolutional neural networks for pedestrian detection arxiv: http://arxiv.org/abs/1510.03608 github: https://github.com/DenisTome/DeepPed
Scale-aware Fast R-CNN for Pedestrian Detection arxiv: https://arxiv.org/abs/1510.08160
New algorithm improves speed and accuracy of pedestrian detection blog: http://www.eurekalert.org/pub_releases/2016-02/uoc–nai020516.php
Pushing the Limits of Deep CNNs for Pedestrian Detection intro: “set a new record on the Caltech pedestrian dataset, lowering the log-average miss rate from 11.7% to 8.9%” arxiv: http://arxiv.org/abs/1603.04525
A Real-Time Deep Learning Pedestrian Detector for Robot Navigation arxiv: http://arxiv.org/abs/1607.04436
A Real-Time Pedestrian Detector using Deep Learning for Human-Aware Navigation arxiv: http://arxiv.org/abs/1607.04441
Is Faster R-CNN Doing Well for Pedestrian Detection? intro: ECCV 2016 arxiv: http://arxiv.org/abs/1607.07032 github: https://github.com/zhangliliang/RPN_BF/tree/RPN-pedestrian
Reduced Memory Region Based Deep Convolutional Neural Network Detection intro: IEEE 2016 ICCE-Berlin arxiv: http://arxiv.org/abs/1609.02500
Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection arxiv: https://arxiv.org/abs/1610.03466
Multispectral Deep Neural Networks for Pedestrian Detection intro: BMVC 2016 oral arxiv: https://arxiv.org/abs/1611.02644
Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters intro: CVPR 2017 project page: http://ml.cs.tsinghua.edu.cn:5000/publications/synunity/ arxiv: https://arxiv.org/abs/1703.06283 github(Tensorflow): https://github.com/huangshiyu13/RPNplus
Illuminating Pedestrians via Simultaneous Detection & Segmentation [https://arxiv.org/abs/1706.08564](https://arxiv.org/abs/1706.08564 Rotational Rectification Network for Robust Pedestrian Detection intro: CMU & Volvo Construction arxiv: https://arxiv.org/abs/1706.08917
Vehicle Detection DAVE: A Unified Framework for Fast Vehicle Detection and Annotation intro: ECCV 2016 arxiv: http://arxiv.org/abs/1607.04564
Evolving Boxes for fast Vehicle Detection arxiv: https://arxiv.org/abs/1702.00254
最后
以上就是忐忑白羊最近收集整理的关于目标识别检测的所有算法的全部内容,更多相关目标识别检测内容请搜索靠谱客的其他文章。
发表评论 取消回复