detector.c
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309#include "network.h" #include "region_layer.h" #include "cost_layer.h" #include "utils.h" #include "parser.h" #include "box.h" #include "demo.h" #include "option_list.h" #ifdef OPENCV #include "opencv2/highgui/highgui_c.h" #include "opencv2/core/core_c.h" //#include "opencv2/core/core.hpp" #include "opencv2/core/version.hpp" #include "opencv2/imgproc/imgproc_c.h" #ifndef CV_VERSION_EPOCH #include "opencv2/videoio/videoio_c.h" #define OPENCV_VERSION CVAUX_STR(CV_VERSION_MAJOR)"" CVAUX_STR(CV_VERSION_MINOR)"" CVAUX_STR(CV_VERSION_REVISION) #pragma comment(lib, "opencv_world" OPENCV_VERSION ".lib") #else #define OPENCV_VERSION CVAUX_STR(CV_VERSION_EPOCH)"" CVAUX_STR(CV_VERSION_MAJOR)"" CVAUX_STR(CV_VERSION_MINOR) #pragma comment(lib, "opencv_core" OPENCV_VERSION ".lib") #pragma comment(lib, "opencv_imgproc" OPENCV_VERSION ".lib") #pragma comment(lib, "opencv_highgui" OPENCV_VERSION ".lib") #endif IplImage* draw_train_chart(float max_img_loss, int max_batches, int number_of_lines, int img_size); void draw_train_loss(IplImage* img, int img_size, float avg_loss, float max_img_loss, int current_batch, int max_batches); #endif // OPENCV #include "http_stream.h" int check_mistakes; static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90}; void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show) { list *options = read_data_cfg(datacfg); char *train_images = option_find_str(options, "train", "data/train.list"); char *backup_directory = option_find_str(options, "backup", "/backup/"); srand(time(0)); char *base = basecfg(cfgfile); printf("%sn", base); float avg_loss = -1; network *nets = calloc(ngpus, sizeof(network)); srand(time(0)); int seed = rand(); int i; for(i = 0; i < ngpus; ++i){ srand(seed); #ifdef GPU cuda_set_device(gpus[i]); #endif nets[i] = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&nets[i], weightfile); } if(clear) *nets[i].seen = 0; nets[i].learning_rate *= ngpus; } srand(time(0)); network net = nets[0]; const int actual_batch_size = net.batch * net.subdivisions; if (actual_batch_size == 1) { printf("n Error: You set incorrect value batch=1 for Training! You should set batch=64 subdivision=64 n"); getchar(); } else if (actual_batch_size < 64) { printf("n Warning: You set batch=%d lower than 64! It is recommended to set batch=64 subdivision=64 n", actual_batch_size); } int imgs = net.batch * net.subdivisions * ngpus; printf("Learning Rate: %g, Momentum: %g, Decay: %gn", net.learning_rate, net.momentum, net.decay); data train, buffer; layer l = net.layers[net.n - 1]; int classes = l.classes; float jitter = l.jitter; list *plist = get_paths(train_images); //int N = plist->size; char **paths = (char **)list_to_array(plist); int init_w = net.w; int init_h = net.h; int iter_save; iter_save = get_current_batch(net); load_args args = {0}; args.w = net.w; args.h = net.h; args.c = net.c; args.paths = paths; args.n = imgs; args.m = plist->size; args.classes = classes; args.flip = net.flip; args.jitter = jitter; args.num_boxes = l.max_boxes; args.small_object = net.small_object; args.d = &buffer; args.type = DETECTION_DATA; args.threads = 16; // 64 args.angle = net.angle; args.exposure = net.exposure; args.saturation = net.saturation; args.hue = net.hue; #ifdef OPENCV args.threads = 3 * ngpus; IplImage* img = NULL; float max_img_loss = 5; int number_of_lines = 100; int img_size = 1000; if (!dont_show) img = draw_train_chart(max_img_loss, net.max_batches, number_of_lines, img_size); #endif //OPENCV pthread_t load_thread = load_data(args); double time; int count = 0; //while(i*imgs < N*120){ while(get_current_batch(net) < net.max_batches){ if(l.random && count++%10 == 0){ printf("Resizingn"); //int dim = (rand() % 12 + (init_w/32 - 5)) * 32; // +-160 //int dim = (rand() % 4 + 16) * 32; //if (get_current_batch(net)+100 > net.max_batches) dim = 544; //int random_val = rand() % 12; //int dim_w = (random_val + (init_w / 32 - 5)) * 32; // +-160 //int dim_h = (random_val + (init_h / 32 - 5)) * 32; // +-160 float random_val = rand_scale(1.4); // *x or /x int dim_w = roundl(random_val*init_w / 32) * 32; int dim_h = roundl(random_val*init_h / 32) * 32; if (dim_w < 32) dim_w = 32; if (dim_h < 32) dim_h = 32; printf("%d x %d n", dim_w, dim_h); args.w = dim_w; args.h = dim_h; pthread_join(load_thread, 0); train = buffer; free_data(train); load_thread = load_data(args); for(i = 0; i < ngpus; ++i){ resize_network(nets + i, dim_w, dim_h); } net = nets[0]; } time=what_time_is_it_now(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data(args); /* int k; for(k = 0; k < l.max_boxes; ++k){ box b = float_to_box(train.y.vals[10] + 1 + k*5); if(!b.x) break; printf("loaded: %f %f %f %fn", b.x, b.y, b.w, b.h); } image im = float_to_image(448, 448, 3, train.X.vals[10]); int k; for(k = 0; k < l.max_boxes; ++k){ box b = float_to_box(train.y.vals[10] + 1 + k*5); printf("%d %d %d %dn", truth.x, truth.y, truth.w, truth.h); draw_bbox(im, b, 8, 1,0,0); } save_image(im, "truth11"); */ printf("Loaded: %lf secondsn", (what_time_is_it_now()-time)); time=what_time_is_it_now(); float loss = 0; #ifdef GPU if(ngpus == 1){ loss = train_network(net, train); } else { loss = train_networks(nets, ngpus, train, 4); } #else loss = train_network(net, train); #endif if (avg_loss < 0 || avg_loss != avg_loss) avg_loss = loss; // if(-inf or nan) avg_loss = avg_loss*.9 + loss*.1; i = get_current_batch(net); printf("n %d: %f, %f avg loss, %f rate, %lf seconds, %d imagesn", get_current_batch(net), loss, avg_loss, get_current_rate(net), (what_time_is_it_now()-time), i*imgs); #ifdef OPENCV if(!dont_show) draw_train_loss(img, img_size, avg_loss, max_img_loss, i, net.max_batches); #endif // OPENCV //if (i % 1000 == 0 || (i < 1000 && i % 100 == 0)) { //if (i % 100 == 0) { if(i >= (iter_save + 100)) { iter_save = i; #ifdef GPU if (ngpus != 1) sync_nets(nets, ngpus, 0); #endif char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); } free_data(train); } #ifdef GPU if(ngpus != 1) sync_nets(nets, ngpus, 0); #endif char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); #ifdef OPENCV cvReleaseImage(&img); cvDestroyAllWindows(); #endif // free memory pthread_join(load_thread, 0); free_data(buffer); free(base); free(paths); free_list_contents(plist); free_list(plist); free_list_contents_kvp(options); free_list(options); free(nets); free_network(net); } static int get_coco_image_id(char *filename) { char *p = strrchr(filename, '/'); char *c = strrchr(filename, '_'); if (c) p = c; return atoi(p + 1); } static void print_cocos(FILE *fp, char *image_path, detection *dets, int num_boxes, int classes, int w, int h) { int i, j; int image_id = get_coco_image_id(image_path); for (i = 0; i < num_boxes; ++i) { float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.; float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.; float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.; float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.; if (xmin < 0) xmin = 0; if (ymin < 0) ymin = 0; if (xmax > w) xmax = w; if (ymax > h) ymax = h; float bx = xmin; float by = ymin; float bw = xmax - xmin; float bh = ymax - ymin; for (j = 0; j < classes; ++j) { if (dets[i].prob[j]) fprintf(fp, "{"image_id":%d, "category_id":%d, "bbox":[%f, %f, %f, %f], "score":%f},n", image_id, coco_ids[j], bx, by, bw, bh, dets[i].prob[j]); } } } void print_detector_detections(FILE **fps, char *id, detection *dets, int total, int classes, int w, int h) { int i, j; for (i = 0; i < total; ++i) { float xmin = dets[i].bbox.x - dets[i].bbox.w / 2. + 1; float xmax = dets[i].bbox.x + dets[i].bbox.w / 2. + 1; float ymin = dets[i].bbox.y - dets[i].bbox.h / 2. + 1; float ymax = dets[i].bbox.y + dets[i].bbox.h / 2. + 1; if (xmin < 1) xmin = 1; if (ymin < 1) ymin = 1; if (xmax > w) xmax = w; if (ymax > h) ymax = h; for (j = 0; j < classes; ++j) { if (dets[i].prob[j]) fprintf(fps[j], "%s %f %f %f %f %fn", id, dets[i].prob[j], xmin, ymin, xmax, ymax); } } } void print_imagenet_detections(FILE *fp, int id, detection *dets, int total, int classes, int w, int h) { int i, j; for (i = 0; i < total; ++i) { float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.; float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.; float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.; float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.; if (xmin < 0) xmin = 0; if (ymin < 0) ymin = 0; if (xmax > w) xmax = w; if (ymax > h) ymax = h; for (j = 0; j < classes; ++j) { int class = j; if (dets[i].prob[class]) fprintf(fp, "%d %d %f %f %f %f %fn", id, j + 1, dets[i].prob[class], xmin, ymin, xmax, ymax); } } } void validate_detector(char *datacfg, char *cfgfile, char *weightfile, char *outfile) { int j; list *options = read_data_cfg(datacfg); char *valid_images = option_find_str(options, "valid", "data/train.list"); char *name_list = option_find_str(options, "names", "data/names.list"); char *prefix = option_find_str(options, "results", "results"); char **names = get_labels(name_list); char *mapf = option_find_str(options, "map", 0); int *map = 0; if (mapf) map = read_map(mapf); network net = parse_network_cfg_custom(cfgfile, 1); // set batch=1 if (weightfile) { load_weights(&net, weightfile); } //set_batch_network(&net, 1); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %gn", net.learning_rate, net.momentum, net.decay); srand(time(0)); list *plist = get_paths(valid_images); char **paths = (char **)list_to_array(plist); layer l = net.layers[net.n - 1]; int classes = l.classes; char buff[1024]; char *type = option_find_str(options, "eval", "voc"); FILE *fp = 0; FILE **fps = 0; int coco = 0; int imagenet = 0; if (0 == strcmp(type, "coco")) { if (!outfile) outfile = "coco_results"; snprintf(buff, 1024, "%s/%s.json", prefix, outfile); fp = fopen(buff, "w"); fprintf(fp, "[n"); coco = 1; } else if (0 == strcmp(type, "imagenet")) { if (!outfile) outfile = "imagenet-detection"; snprintf(buff, 1024, "%s/%s.txt", prefix, outfile); fp = fopen(buff, "w"); imagenet = 1; classes = 200; } else { if (!outfile) outfile = "comp4_det_test_"; fps = calloc(classes, sizeof(FILE *)); for (j = 0; j < classes; ++j) { snprintf(buff, 1024, "%s/%s%s.txt", prefix, outfile, names[j]); fps[j] = fopen(buff, "w"); } } int m = plist->size; int i = 0; int t; float thresh = .005; float nms = .45; int nthreads = 4; image *val = calloc(nthreads, sizeof(image)); image *val_resized = calloc(nthreads, sizeof(image)); image *buf = calloc(nthreads, sizeof(image)); image *buf_resized = calloc(nthreads, sizeof(image)); pthread_t *thr = calloc(nthreads, sizeof(pthread_t)); load_args args = { 0 }; args.w = net.w; args.h = net.h; args.c = net.c; args.type = IMAGE_DATA; //args.type = LETTERBOX_DATA; for (t = 0; t < nthreads; ++t) { args.path = paths[i + t]; args.im = &buf[t]; args.resized = &buf_resized[t]; thr[t] = load_data_in_thread(args); } time_t start = time(0); for (i = nthreads; i < m + nthreads; i += nthreads) { fprintf(stderr, "%dn", i); for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { pthread_join(thr[t], 0); val[t] = buf[t]; val_resized[t] = buf_resized[t]; } for (t = 0; t < nthreads && i + t < m; ++t) { args.path = paths[i + t]; args.im = &buf[t]; args.resized = &buf_resized[t]; thr[t] = load_data_in_thread(args); } for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { char *path = paths[i + t - nthreads]; char *id = basecfg(path); float *X = val_resized[t].data; network_predict(net, X); int w = val[t].w; int h = val[t].h; int nboxes = 0; int letterbox = (args.type == LETTERBOX_DATA); detection *dets = get_network_boxes(&net, w, h, thresh, .5, map, 0, &nboxes, letterbox); if (nms) do_nms_sort(dets, nboxes, classes, nms); if (coco) { print_cocos(fp, path, dets, nboxes, classes, w, h); } else if (imagenet) { print_imagenet_detections(fp, i + t - nthreads + 1, dets, nboxes, classes, w, h); } else { print_detector_detections(fps, id, dets, nboxes, classes, w, h); } free_detections(dets, nboxes); free(id); free_image(val[t]); free_image(val_resized[t]); } } for (j = 0; j < classes; ++j) { if (fps) fclose(fps[j]); } if (coco) { fseek(fp, -2, SEEK_CUR); fprintf(fp, "n]n"); fclose(fp); } fprintf(stderr, "Total Detection Time: %f Secondsn", (double)time(0) - start); } void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile) { network net = parse_network_cfg_custom(cfgfile, 1); // set batch=1 if (weightfile) { load_weights(&net, weightfile); } //set_batch_network(&net, 1); fuse_conv_batchnorm(net); srand(time(0)); //list *plist = get_paths("data/coco_val_5k.list"); list *options = read_data_cfg(datacfg); char *valid_images = option_find_str(options, "valid", "data/train.txt"); list *plist = get_paths(valid_images); char **paths = (char **)list_to_array(plist); layer l = net.layers[net.n - 1]; int j, k; int m = plist->size; int i = 0; float thresh = .001; float iou_thresh = .5; float nms = .4; int total = 0; int correct = 0; int proposals = 0; float avg_iou = 0; for (i = 0; i < m; ++i) { char *path = paths[i]; image orig = load_image(path, 0, 0, net.c); image sized = resize_image(orig, net.w, net.h); char *id = basecfg(path); network_predict(net, sized.data); int nboxes = 0; int letterbox = 0; detection *dets = get_network_boxes(&net, sized.w, sized.h, thresh, .5, 0, 1, &nboxes, letterbox); if (nms) do_nms_obj(dets, nboxes, 1, nms); char labelpath[4096]; replace_image_to_label(path, labelpath); int num_labels = 0; box_label *truth = read_boxes(labelpath, &num_labels); for (k = 0; k < nboxes; ++k) { if (dets[k].objectness > thresh) { ++proposals; } } for (j = 0; j < num_labels; ++j) { ++total; box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h }; float best_iou = 0; for (k = 0; k < nboxes; ++k) { float iou = box_iou(dets[k].bbox, t); if (dets[k].objectness > thresh && iou > best_iou) { best_iou = iou; } } avg_iou += best_iou; if (best_iou > iou_thresh) { ++correct; } } //fprintf(stderr, " %s - %s - ", paths[i], labelpath); fprintf(stderr, "%5d %5d %5dtRPs/Img: %.2ftIOU: %.2f%%tRecall:%.2f%%n", i, correct, total, (float)proposals / (i + 1), avg_iou * 100 / total, 100.*correct / total); free(id); free_image(orig); free_image(sized); } } typedef struct { box b; float p; int class_id; int image_index; int truth_flag; int unique_truth_index; } box_prob; int detections_comparator(const void *pa, const void *pb) { box_prob a = *(box_prob *)pa; box_prob b = *(box_prob *)pb; float diff = a.p - b.p; if (diff < 0) return 1; else if (diff > 0) return -1; return 0; } void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float thresh_calc_avg_iou) { int j; list *options = read_data_cfg(datacfg); char *valid_images = option_find_str(options, "valid", "data/train.txt"); char *difficult_valid_images = option_find_str(options, "difficult", NULL); char *name_list = option_find_str(options, "names", "data/names.list"); char **names = get_labels(name_list); char *mapf = option_find_str(options, "map", 0); int *map = 0; if (mapf) map = read_map(mapf); FILE* reinforcement_fd = NULL; network net = parse_network_cfg_custom(cfgfile, 1); // set batch=1 if (weightfile) { load_weights(&net, weightfile); } //set_batch_network(&net, 1); fuse_conv_batchnorm(net); calculate_binary_weights(net); srand(time(0)); list *plist = get_paths(valid_images); char **paths = (char **)list_to_array(plist); char **paths_dif = NULL; if (difficult_valid_images) { list *plist_dif = get_paths(difficult_valid_images); paths_dif = (char **)list_to_array(plist_dif); } layer l = net.layers[net.n - 1]; int classes = l.classes; int m = plist->size; int i = 0; int t; const float thresh = .005; const float nms = .45; const float iou_thresh = 0.5; int nthreads = 4; image *val = calloc(nthreads, sizeof(image)); image *val_resized = calloc(nthreads, sizeof(image)); image *buf = calloc(nthreads, sizeof(image)); image *buf_resized = calloc(nthreads, sizeof(image)); pthread_t *thr = calloc(nthreads, sizeof(pthread_t)); load_args args = { 0 }; args.w = net.w; args.h = net.h; args.c = net.c; args.type = IMAGE_DATA; //args.type = LETTERBOX_DATA; //const float thresh_calc_avg_iou = 0.24; float avg_iou = 0; int tp_for_thresh = 0; int fp_for_thresh = 0; box_prob *detections = calloc(1, sizeof(box_prob)); int detections_count = 0; int unique_truth_count = 0; int *truth_classes_count = calloc(classes, sizeof(int)); for (t = 0; t < nthreads; ++t) { args.path = paths[i + t]; args.im = &buf[t]; args.resized = &buf_resized[t]; thr[t] = load_data_in_thread(args); } time_t start = time(0); for (i = nthreads; i < m + nthreads; i += nthreads) { fprintf(stderr, "%dn", i); for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { pthread_join(thr[t], 0); val[t] = buf[t]; val_resized[t] = buf_resized[t]; } for (t = 0; t < nthreads && i + t < m; ++t) { args.path = paths[i + t]; args.im = &buf[t]; args.resized = &buf_resized[t]; thr[t] = load_data_in_thread(args); } for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { const int image_index = i + t - nthreads; char *path = paths[image_index]; char *id = basecfg(path); float *X = val_resized[t].data; network_predict(net, X); int nboxes = 0; float hier_thresh = 0; detection *dets; if (args.type == LETTERBOX_DATA) { int letterbox = 1; dets = get_network_boxes(&net, val[t].w, val[t].h, thresh, hier_thresh, 0, 1, &nboxes, letterbox); } else { int letterbox = 0; dets = get_network_boxes(&net, 1, 1, thresh, hier_thresh, 0, 0, &nboxes, letterbox); } //detection *dets = get_network_boxes(&net, val[t].w, val[t].h, thresh, hier_thresh, 0, 1, &nboxes, letterbox); // for letterbox=1 if (nms) do_nms_sort(dets, nboxes, l.classes, nms); char labelpath[4096]; replace_image_to_label(path, labelpath); int num_labels = 0; box_label *truth = read_boxes(labelpath, &num_labels); int i, j; for (j = 0; j < num_labels; ++j) { truth_classes_count[truth[j].id]++; } // difficult box_label *truth_dif = NULL; int num_labels_dif = 0; if (paths_dif) { char *path_dif = paths_dif[image_index]; char labelpath_dif[4096]; replace_image_to_label(path_dif, labelpath_dif); truth_dif = read_boxes(labelpath_dif, &num_labels_dif); } const int checkpoint_detections_count = detections_count; for (i = 0; i < nboxes; ++i) { int class_id; for (class_id = 0; class_id < classes; ++class_id) { float prob = dets[i].prob[class_id]; if (prob > 0) { detections_count++; detections = realloc(detections, detections_count * sizeof(box_prob)); detections[detections_count - 1].b = dets[i].bbox; detections[detections_count - 1].p = prob; detections[detections_count - 1].image_index = image_index; detections[detections_count - 1].class_id = class_id; detections[detections_count - 1].truth_flag = 0; detections[detections_count - 1].unique_truth_index = -1; int truth_index = -1; float max_iou = 0; for (j = 0; j < num_labels; ++j) { box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h }; //printf(" IoU = %f, prob = %f, class_id = %d, truth[j].id = %d n", // box_iou(dets[i].bbox, t), prob, class_id, truth[j].id); float current_iou = box_iou(dets[i].bbox, t); if (current_iou > iou_thresh && class_id == truth[j].id) { if (current_iou > max_iou) { max_iou = current_iou; truth_index = unique_truth_count + j; } } } // best IoU if (truth_index > -1) { detections[detections_count - 1].truth_flag = 1; detections[detections_count - 1].unique_truth_index = truth_index; } else { // if object is difficult then remove detection for (j = 0; j < num_labels_dif; ++j) { box t = { truth_dif[j].x, truth_dif[j].y, truth_dif[j].w, truth_dif[j].h }; float current_iou = box_iou(dets[i].bbox, t); if (current_iou > iou_thresh && class_id == truth_dif[j].id) { --detections_count; break; } } } // calc avg IoU, true-positives, false-positives for required Threshold if (prob > thresh_calc_avg_iou) { int z, found = 0; for (z = checkpoint_detections_count; z < detections_count-1; ++z) if (detections[z].unique_truth_index == truth_index) { found = 1; break; } if(truth_index > -1 && found == 0) { avg_iou += max_iou; ++tp_for_thresh; } else fp_for_thresh++; } } } } unique_truth_count += num_labels; //static int previous_errors = 0; //int total_errors = fp_for_thresh + (unique_truth_count - tp_for_thresh); //int errors_in_this_image = total_errors - previous_errors; //previous_errors = total_errors; //if(reinforcement_fd == NULL) reinforcement_fd = fopen("reinforcement.txt", "wb"); //char buff[1000]; //sprintf(buff, "%sn", path); //if(errors_in_this_image > 0) fwrite(buff, sizeof(char), strlen(buff), reinforcement_fd); free_detections(dets, nboxes); free(id); free_image(val[t]); free_image(val_resized[t]); } } if((tp_for_thresh + fp_for_thresh) > 0) avg_iou = avg_iou / (tp_for_thresh + fp_for_thresh); // SORT(detections) qsort(detections, detections_count, sizeof(box_prob), detections_comparator); typedef struct { double precision; double recall; int tp, fp, fn; } pr_t; // for PR-curve pr_t **pr = calloc(classes, sizeof(pr_t*)); for (i = 0; i < classes; ++i) { pr[i] = calloc(detections_count, sizeof(pr_t)); } printf("detections_count = %d, unique_truth_count = %d n", detections_count, unique_truth_count); int *truth_flags = calloc(unique_truth_count, sizeof(int)); int rank; for (rank = 0; rank < detections_count; ++rank) { if(rank % 100 == 0) printf(" rank = %d of ranks = %d r", rank, detections_count); if (rank > 0) { int class_id; for (class_id = 0; class_id < classes; ++class_id) { pr[class_id][rank].tp = pr[class_id][rank - 1].tp; pr[class_id][rank].fp = pr[class_id][rank - 1].fp; } } box_prob d = detections[rank]; // if (detected && isn't detected before) if (d.truth_flag == 1) { if (truth_flags[d.unique_truth_index] == 0) { truth_flags[d.unique_truth_index] = 1; pr[d.class_id][rank].tp++; // true-positive } } else { pr[d.class_id][rank].fp++; // false-positive } for (i = 0; i < classes; ++i) { const int tp = pr[i][rank].tp; const int fp = pr[i][rank].fp; const int fn = truth_classes_count[i] - tp; // false-negative = objects - true-positive pr[i][rank].fn = fn; if ((tp + fp) > 0) pr[i][rank].precision = (double)tp / (double)(tp + fp); else pr[i][rank].precision = 0; if ((tp + fn) > 0) pr[i][rank].recall = (double)tp / (double)(tp + fn); else pr[i][rank].recall = 0; } } free(truth_flags); double mean_average_precision = 0; for (i = 0; i < classes; ++i) { double avg_precision = 0; int point; for (point = 0; point < 11; ++point) { double cur_recall = point * 0.1; double cur_precision = 0; for (rank = 0; rank < detections_count; ++rank) { if (pr[i][rank].recall >= cur_recall) { // > or >= if (pr[i][rank].precision > cur_precision) { cur_precision = pr[i][rank].precision; } } } //printf("class_id = %d, point = %d, cur_recall = %.4f, cur_precision = %.4f n", i, point, cur_recall, cur_precision); avg_precision += cur_precision; } avg_precision = avg_precision / 11; printf("class_id = %d, name = %s, t ap = %2.2f %% n", i, names[i], avg_precision*100); mean_average_precision += avg_precision; } const float cur_precision = (float)tp_for_thresh / ((float)tp_for_thresh + (float)fp_for_thresh); const float cur_recall = (float)tp_for_thresh / ((float)tp_for_thresh + (float)(unique_truth_count - tp_for_thresh)); const float f1_score = 2.F * cur_precision * cur_recall / (cur_precision + cur_recall); printf(" for thresh = %1.2f, precision = %1.2f, recall = %1.2f, F1-score = %1.2f n", thresh_calc_avg_iou, cur_precision, cur_recall, f1_score); printf(" for thresh = %0.2f, TP = %d, FP = %d, FN = %d, average IoU = %2.2f %% n", thresh_calc_avg_iou, tp_for_thresh, fp_for_thresh, unique_truth_count - tp_for_thresh, avg_iou * 100); mean_average_precision = mean_average_precision / classes; printf("n mean average precision (mAP) = %f, or %2.2f %% n", mean_average_precision, mean_average_precision*100); for (i = 0; i < classes; ++i) { free(pr[i]); } free(pr); free(detections); free(truth_classes_count); fprintf(stderr, "Total Detection Time: %f Secondsn", (double)(time(0) - start)); if (reinforcement_fd != NULL) fclose(reinforcement_fd); } #ifdef OPENCV typedef struct { float w, h; } anchors_t; int anchors_comparator(const void *pa, const void *pb) { anchors_t a = *(anchors_t *)pa; anchors_t b = *(anchors_t *)pb; float diff = b.w*b.h - a.w*a.h; if (diff < 0) return 1; else if (diff > 0) return -1; return 0; } void calc_anchors(char *datacfg, int num_of_clusters, int width, int height, int show) { printf("n num_of_clusters = %d, width = %d, height = %d n", num_of_clusters, width, height); if (width < 0 || height < 0) { printf("Usage: darknet detector calc_anchors data/voc.data -num_of_clusters 9 -width 416 -height 416 n"); printf("Error: set width and height n"); return; } //float pointsdata[] = { 1,1, 2,2, 6,6, 5,5, 10,10 }; float *rel_width_height_array = calloc(1000, sizeof(float)); list *options = read_data_cfg(datacfg); char *train_images = option_find_str(options, "train", "data/train.list"); list *plist = get_paths(train_images); int number_of_images = plist->size; char **paths = (char **)list_to_array(plist); int number_of_boxes = 0; printf(" read labels from %d images n", number_of_images); int i, j; for (i = 0; i < number_of_images; ++i) { char *path = paths[i]; char labelpath[4096]; replace_image_to_label(path, labelpath); int num_labels = 0; box_label *truth = read_boxes(labelpath, &num_labels); //printf(" new path: %s n", labelpath); char buff[1024]; for (j = 0; j < num_labels; ++j) { if (truth[j].x > 1 || truth[j].x <= 0 || truth[j].y > 1 || truth[j].y <= 0 || truth[j].w > 1 || truth[j].w <= 0 || truth[j].h > 1 || truth[j].h <= 0) { printf("nnWrong label: %s - j = %d, x = %f, y = %f, width = %f, height = %f n", labelpath, j, truth[j].x, truth[j].y, truth[j].w, truth[j].h); sprintf(buff, "echo "Wrong label: %s - j = %d, x = %f, y = %f, width = %f, height = %f" >> bad_label.list", labelpath, j, truth[j].x, truth[j].y, truth[j].w, truth[j].h); system(buff); if (check_mistakes) getchar(); } number_of_boxes++; rel_width_height_array = realloc(rel_width_height_array, 2 * number_of_boxes * sizeof(float)); rel_width_height_array[number_of_boxes * 2 - 2] = truth[j].w * width; rel_width_height_array[number_of_boxes * 2 - 1] = truth[j].h * height; printf("r loaded t image: %d t box: %d", i+1, number_of_boxes); } } printf("n all loaded. n"); CvMat* points = cvCreateMat(number_of_boxes, 2, CV_32FC1); CvMat* centers = cvCreateMat(num_of_clusters, 2, CV_32FC1); CvMat* labels = cvCreateMat(number_of_boxes, 1, CV_32SC1); for (i = 0; i < number_of_boxes; ++i) { points->data.fl[i * 2] = rel_width_height_array[i * 2]; points->data.fl[i * 2 + 1] = rel_width_height_array[i * 2 + 1]; //cvSet1D(points, i * 2, cvScalar(rel_width_height_array[i * 2], 0, 0, 0)); //cvSet1D(points, i * 2 + 1, cvScalar(rel_width_height_array[i * 2 + 1], 0, 0, 0)); } const int attemps = 10; double compactness; enum { KMEANS_RANDOM_CENTERS = 0, KMEANS_USE_INITIAL_LABELS = 1, KMEANS_PP_CENTERS = 2 }; printf("n calculating k-means++ ..."); // Should be used: distance(box, centroid) = 1 - IoU(box, centroid) cvKMeans2(points, num_of_clusters, labels, cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10000, 0), attemps, 0, KMEANS_PP_CENTERS, centers, &compactness); // sort anchors qsort(centers->data.fl, num_of_clusters, 2*sizeof(float), anchors_comparator); //orig 2.0 anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52 //float orig_anch[] = { 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52 }; // worse than ours (even for 19x19 final size - for input size 608x608) //orig anchors = 1.3221,1.73145, 3.19275,4.00944, 5.05587,8.09892, 9.47112,4.84053, 11.2364,10.0071 //float orig_anch[] = { 1.3221,1.73145, 3.19275,4.00944, 5.05587,8.09892, 9.47112,4.84053, 11.2364,10.0071 }; // orig (IoU=59.90%) better than ours (59.75%) //gen_anchors.py = 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66 //float orig_anch[] = { 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66 }; // ours: anchors = 9.3813,6.0095, 3.3999,5.3505, 10.9476,11.1992, 5.0161,9.8314, 1.5003,2.1595 //float orig_anch[] = { 9.3813,6.0095, 3.3999,5.3505, 10.9476,11.1992, 5.0161,9.8314, 1.5003,2.1595 }; //for (i = 0; i < num_of_clusters * 2; ++i) centers->data.fl[i] = orig_anch[i]; //for (i = 0; i < number_of_boxes; ++i) // printf("%2.2f,%2.2f, ", points->data.fl[i * 2], points->data.fl[i * 2 + 1]); printf("n"); float avg_iou = 0; for (i = 0; i < number_of_boxes; ++i) { float box_w = points->data.fl[i * 2]; float box_h = points->data.fl[i * 2 + 1]; //int cluster_idx = labels->data.i[i]; int cluster_idx = 0; float min_dist = FLT_MAX; for (j = 0; j < num_of_clusters; ++j) { float anchor_w = centers->data.fl[j * 2]; float anchor_h = centers->data.fl[j * 2 + 1]; float w_diff = anchor_w - box_w; float h_diff = anchor_h - box_h; float distance = sqrt(w_diff*w_diff + h_diff*h_diff); if (distance < min_dist) min_dist = distance, cluster_idx = j; } float anchor_w = centers->data.fl[cluster_idx * 2]; float anchor_h = centers->data.fl[cluster_idx * 2 + 1]; float min_w = (box_w < anchor_w) ? box_w : anchor_w; float min_h = (box_h < anchor_h) ? box_h : anchor_h; float box_intersect = min_w*min_h; float box_union = box_w*box_h + anchor_w*anchor_h - box_intersect; float iou = box_intersect / box_union; if (iou > 1 || iou < 0) { // || box_w > width || box_h > height) { printf(" Wrong label: i = %d, box_w = %d, box_h = %d, anchor_w = %d, anchor_h = %d, iou = %f n", i, box_w, box_h, anchor_w, anchor_h, iou); } else avg_iou += iou; } avg_iou = 100 * avg_iou / number_of_boxes; printf("n avg IoU = %2.2f %% n", avg_iou); char buff[1024]; FILE* fw = fopen("anchors.txt", "wb"); if (fw) { printf("nSaving anchors to the file: anchors.txt n"); printf("anchors = "); for (i = 0; i < num_of_clusters; ++i) { sprintf(buff, "%2.4f,%2.4f", centers->data.fl[i * 2], centers->data.fl[i * 2 + 1]); printf("%s", buff); fwrite(buff, sizeof(char), strlen(buff), fw); if (i + 1 < num_of_clusters) { fwrite(", ", sizeof(char), 2, fw); printf(", "); } } printf("n"); fclose(fw); } else { printf(" Error: file anchors.txt can't be open n"); } if (show) { size_t img_size = 700; IplImage* img = cvCreateImage(cvSize(img_size, img_size), 8, 3); cvZero(img); for (j = 0; j < num_of_clusters; ++j) { CvPoint pt1, pt2; pt1.x = pt1.y = 0; pt2.x = centers->data.fl[j * 2] * img_size / width; pt2.y = centers->data.fl[j * 2 + 1] * img_size / height; cvRectangle(img, pt1, pt2, CV_RGB(255, 255, 255), 1, 8, 0); } for (i = 0; i < number_of_boxes; ++i) { CvPoint pt; pt.x = points->data.fl[i * 2] * img_size / width; pt.y = points->data.fl[i * 2 + 1] * img_size / height; int cluster_idx = labels->data.i[i]; int red_id = (cluster_idx * (uint64_t)123 + 55) % 255; int green_id = (cluster_idx * (uint64_t)321 + 33) % 255; int blue_id = (cluster_idx * (uint64_t)11 + 99) % 255; cvCircle(img, pt, 1, CV_RGB(red_id, green_id, blue_id), CV_FILLED, 8, 0); //if(pt.x > img_size || pt.y > img_size) printf("n pt.x = %d, pt.y = %d n", pt.x, pt.y); } cvShowImage("clusters", img); cvWaitKey(0); cvReleaseImage(&img); cvDestroyAllWindows(); } free(rel_width_height_array); cvReleaseMat(&points); cvReleaseMat(¢ers); cvReleaseMat(&labels); } #else void calc_anchors(char *datacfg, int num_of_clusters, int width, int height, int show) { printf(" k-means++ can't be used without OpenCV, because there is used cvKMeans2 implementation n"); } #endif // OPENCV void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, int dont_show, int ext_output, int save_labels) { list *options = read_data_cfg(datacfg); char *name_list = option_find_str(options, "names", "data/names.list"); int names_size = 0; char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list); image **alphabet = load_alphabet(); network net = parse_network_cfg_custom(cfgfile, 1); // set batch=1 if(weightfile){ load_weights(&net, weightfile); } //set_batch_network(&net, 1); fuse_conv_batchnorm(net); calculate_binary_weights(net); if (net.layers[net.n - 1].classes != names_size) { printf(" Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s n", name_list, names_size, net.layers[net.n - 1].classes, cfgfile); if(net.layers[net.n - 1].classes > names_size) getchar(); } srand(2222222); double time; char buff[256]; char *input = buff; int j; float nms=.45; // 0.4F while(1){ if(filename){ strncpy(input, filename, 256); if(strlen(input) > 0) if (input[strlen(input) - 1] == 0x0d) input[strlen(input) - 1] = 0; } else { printf("****detector.c 1133****** Enter Image Path: "); //dspeia fflush(stdout); input = fgets(input, 256, stdin); if(!input) return; strtok(input, "n"); } image im = load_image(input,0,0,net.c); printf("****detector.c 1140****** input: %c",input); //dspeia int letterbox = 0; image sized = resize_image(im, net.w, net.h); //image sized = letterbox_image(im, net.w, net.h); letterbox = 1; layer l = net.layers[net.n-1]; //box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); //float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); //for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *)); float *X = sized.data; //time= what_time_is_it_now(); double time = get_time_point(); network_predict(net, X); //network_predict_image(&net, im); letterbox = 1; //图片载入完成 printf("%s: Predicted in %lf milli-seconds. **detecotr.c 1162 n", input, ((double)get_time_point() - time) / 1000); //printf("%s: Predicted in %f seconds.n", input, (what_time_is_it_now()-time)); int nboxes = 0; detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letterbox); if (nms) do_nms_sort(dets, nboxes, l.classes, nms); printf("**** l.classes == %c ** n", l.classes); //test classes draw_detections_v3(im, dets, nboxes, thresh, names, alphabet, l.classes, ext_output); //draw_detections_v3,不是image.c的draw_detections save_image(im, "pre-img//predictions"); if (!dont_show) { show_image(im, "predictions"); } // pseudo labeling concept - fast.ai if(save_labels) { char labelpath[4096]; replace_image_to_label(input, labelpath); FILE* fw = fopen(labelpath, "wb"); int i; for (i = 0; i < nboxes; ++i) { char buff[1024]; int class_id = -1; float prob = 0; for (j = 0; j < l.classes; ++j) { if (dets[i].prob[j] > thresh && dets[i].prob[j] > prob) { prob = dets[i].prob[j]; class_id = j; } } if (class_id >= 0) { sprintf(buff, "%d %2.4f %2.4f %2.4f %2.4fn", class_id, dets[i].bbox.x, dets[i].bbox.y, dets[i].bbox.w, dets[i].bbox.h); fwrite(buff, sizeof(char), strlen(buff), fw); } } fclose(fw); } free_detections(dets, nboxes); free_image(im); free_image(sized); //free(boxes); //free_ptrs((void **)probs, l.w*l.h*l.n); #ifdef OPENCV if (!dont_show) { cvWaitKey(0); cvDestroyAllWindows(); } #endif if (filename) break; } // free memory free_ptrs(names, net.layers[net.n - 1].classes); free_list_contents_kvp(options); free_list(options); int i; const int nsize = 8; for (j = 0; j < nsize; ++j) { for (i = 32; i < 127; ++i) { free_image(alphabet[j][i]); } free(alphabet[j]); } free(alphabet); free_network(net); } void run_detector(int argc, char **argv) { //输入中有第四位参数的函数,要求cmd中跟上参数如:"-out_filename result/out.mp4" 其他的不跟参数 int dont_show = find_arg(argc, argv, "-dont_show"); //不展示窗口,find_arg()有匹配为1,无匹配则0 int show = find_arg(argc, argv, "-show"); check_mistakes = find_arg(argc, argv, "-check_mistakes"); int http_stream_port = find_int_arg(argc, argv, "-http_port", -1); //浏览器展示结果的端口号 char *out_filename = find_char_arg(argc, argv, "-out_filename", 0); //如:-out_filename out.mp4,有视频文件输入才能有输出,无法用摄像头保存输出 char *outfile = find_char_arg(argc, argv, "-out", 0); char *prefix = find_char_arg(argc, argv, "-prefix", 0); float thresh = find_float_arg(argc, argv, "-thresh", .25); // 0.24 //单一阈值 float hier_thresh = find_float_arg(argc, argv, "-hier", .5); //多类别显示阈值 int cam_index = find_int_arg(argc, argv, "-c", 0); //摄像头选择 int frame_skip = find_int_arg(argc, argv, "-s", 0); //在框中跳帧显示 int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5); //簇个数? int width = find_int_arg(argc, argv, "-width", -1); int height = find_int_arg(argc, argv, "-height", -1); // extended output in test mode (output of rect bound coords) // and for recall mode (extended output table-like format with results for best_class fit) int ext_output = find_arg(argc, argv, "-ext_output"); //输出目标坐标 int save_labels = find_arg(argc, argv, "-save_labels"); if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid/demo/map] [data] [cfg] [weights (optional)]n", argv[0], argv[1]); return; } char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); //选择gpu int *gpus = 0; int gpu = 0; int ngpus = 0; if(gpu_list){ printf("%sn", gpu_list); int len = strlen(gpu_list); ngpus = 1; int i; for(i = 0; i < len; ++i){ if (gpu_list[i] == ',') ++ngpus; } gpus = calloc(ngpus, sizeof(int)); for(i = 0; i < ngpus; ++i){ gpus[i] = atoi(gpu_list); gpu_list = strchr(gpu_list, ',')+1; } } else { gpu = gpu_index; gpus = &gpu; ngpus = 1; } int clear = find_arg(argc, argv, "-clear"); char *datacfg = argv[3]; char *cfg = argv[4]; char *weights = (argc > 5) ? argv[5] : 0; if(weights) if(strlen(weights) > 0) if (weights[strlen(weights) - 1] == 0x0d) weights[strlen(weights) - 1] = 0; char *filename = (argc > 6) ? argv[6]: 0; if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, dont_show, ext_output, save_labels); else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear, dont_show); else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights, outfile); else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights); else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh); else if(0==strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, width, height, show); else if(0==strcmp(argv[2], "demo")) { list *options = read_data_cfg(datacfg); int classes = option_find_int(options, "classes", 20); //class可能是一帧最大类别数?? char *name_list = option_find_str(options, "names", "data/names.list"); char **names = get_labels(name_list); if(filename) if(strlen(filename) > 0) if (filename[strlen(filename) - 1] == 0x0d) filename[strlen(filename) - 1] = 0; demo(cfg, weights, thresh, hier_thresh, cam_index, filename, names, classes, frame_skip, prefix, out_filename, http_stream_port, dont_show, ext_output); free_list_contents_kvp(options); free_list(options); } else printf(" There isn't such command: %s", argv[2]); }
image.c
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163#include "image.h" #include "utils.h" #include "blas.h" #include "cuda.h" #include <stdio.h> #include <math.h> #define STB_IMAGE_IMPLEMENTATION #include "stb_image.h" #define STB_IMAGE_WRITE_IMPLEMENTATION #include "stb_image_write.h" #ifdef OPENCV #include "opencv2/highgui/highgui_c.h" #include "opencv2/imgproc/imgproc_c.h" #include "opencv2/core/types_c.h" #include "opencv2/core/version.hpp" #ifndef CV_VERSION_EPOCH #include "opencv2/videoio/videoio_c.h" #include "opencv2/imgcodecs/imgcodecs_c.h" #include "http_stream.h" #endif #include "http_stream.h" #endif extern int check_mistakes; int windows = 0; float colors[6][3] = { {1,0,1}, {0,0,1},{0,1,1},{0,1,0},{1,1,0},{1,0,0} }; float get_color(int c, int x, int max) { float ratio = ((float)x/max)*5; int i = floor(ratio); int j = ceil(ratio); ratio -= i; float r = (1-ratio) * colors[i][c] + ratio*colors[j][c]; //printf("%fn", r); return r; } static float get_pixel(image m, int x, int y, int c) { assert(x < m.w && y < m.h && c < m.c); return m.data[c*m.h*m.w + y*m.w + x]; } static float get_pixel_extend(image m, int x, int y, int c) { if (x < 0 || x >= m.w || y < 0 || y >= m.h) return 0; /* if(x < 0) x = 0; if(x >= m.w) x = m.w-1; if(y < 0) y = 0; if(y >= m.h) y = m.h-1; */ if (c < 0 || c >= m.c) return 0; return get_pixel(m, x, y, c); } static void set_pixel(image m, int x, int y, int c, float val) { if (x < 0 || y < 0 || c < 0 || x >= m.w || y >= m.h || c >= m.c) return; assert(x < m.w && y < m.h && c < m.c); m.data[c*m.h*m.w + y*m.w + x] = val; } static void add_pixel(image m, int x, int y, int c, float val) { assert(x < m.w && y < m.h && c < m.c); m.data[c*m.h*m.w + y*m.w + x] += val; } void composite_image(image source, image dest, int dx, int dy) { int x,y,k; for(k = 0; k < source.c; ++k){ for(y = 0; y < source.h; ++y){ for(x = 0; x < source.w; ++x){ float val = get_pixel(source, x, y, k); float val2 = get_pixel_extend(dest, dx+x, dy+y, k); set_pixel(dest, dx+x, dy+y, k, val * val2); } } } } image border_image(image a, int border) { image b = make_image(a.w + 2*border, a.h + 2*border, a.c); int x,y,k; for(k = 0; k < b.c; ++k){ for(y = 0; y < b.h; ++y){ for(x = 0; x < b.w; ++x){ float val = get_pixel_extend(a, x - border, y - border, k); if(x - border < 0 || x - border >= a.w || y - border < 0 || y - border >= a.h) val = 1; set_pixel(b, x, y, k, val); } } } return b; } image tile_images(image a, image b, int dx) { if(a.w == 0) return copy_image(b); image c = make_image(a.w + b.w + dx, (a.h > b.h) ? a.h : b.h, (a.c > b.c) ? a.c : b.c); fill_cpu(c.w*c.h*c.c, 1, c.data, 1); embed_image(a, c, 0, 0); composite_image(b, c, a.w + dx, 0); return c; } image get_label(image **characters, char *string, int size) { if(size > 7) size = 7; image label = make_empty_image(0,0,0); while(*string){ image l = characters[size][(int)*string]; image n = tile_images(label, l, -size - 1 + (size+1)/2); free_image(label); label = n; ++string; } image b = border_image(label, label.h*.25); free_image(label); return b; } image get_label_v3(image **characters, char *string, int size) { size = size / 10; if (size > 7) size = 7; image label = make_empty_image(0, 0, 0); while (*string) { image l = characters[size][(int)*string]; image n = tile_images(label, l, -size - 1 + (size + 1) / 2); free_image(label); label = n; ++string; } image b = border_image(label, label.h*.25); free_image(label); return b; } void draw_label(image a, int r, int c, image label, const float *rgb) { int w = label.w; int h = label.h; if (r - h >= 0) r = r - h; int i, j, k; for(j = 0; j < h && j + r < a.h; ++j){ for(i = 0; i < w && i + c < a.w; ++i){ for(k = 0; k < label.c; ++k){ float val = get_pixel(label, i, j, k); set_pixel(a, i+c, j+r, k, rgb[k] * val); } } } } void draw_box(image a, int x1, int y1, int x2, int y2, float r, float g, float b) { //normalize_image(a); int i; if(x1 < 0) x1 = 0; if(x1 >= a.w) x1 = a.w-1; if(x2 < 0) x2 = 0; if(x2 >= a.w) x2 = a.w-1; if(y1 < 0) y1 = 0; if(y1 >= a.h) y1 = a.h-1; if(y2 < 0) y2 = 0; if(y2 >= a.h) y2 = a.h-1; for(i = x1; i <= x2; ++i){ a.data[i + y1*a.w + 0*a.w*a.h] = r; a.data[i + y2*a.w + 0*a.w*a.h] = r; a.data[i + y1*a.w + 1*a.w*a.h] = g; a.data[i + y2*a.w + 1*a.w*a.h] = g; a.data[i + y1*a.w + 2*a.w*a.h] = b; a.data[i + y2*a.w + 2*a.w*a.h] = b; } for(i = y1; i <= y2; ++i){ a.data[x1 + i*a.w + 0*a.w*a.h] = r; a.data[x2 + i*a.w + 0*a.w*a.h] = r; a.data[x1 + i*a.w + 1*a.w*a.h] = g; a.data[x2 + i*a.w + 1*a.w*a.h] = g; a.data[x1 + i*a.w + 2*a.w*a.h] = b; a.data[x2 + i*a.w + 2*a.w*a.h] = b; } } void draw_box_width(image a, int x1, int y1, int x2, int y2, int w, float r, float g, float b) { int i; for(i = 0; i < w; ++i){ draw_box(a, x1+i, y1+i, x2-i, y2-i, r, g, b); } } void draw_bbox(image a, box bbox, int w, float r, float g, float b) { int left = (bbox.x-bbox.w/2)*a.w; int right = (bbox.x+bbox.w/2)*a.w; int top = (bbox.y-bbox.h/2)*a.h; int bot = (bbox.y+bbox.h/2)*a.h; int i; for(i = 0; i < w; ++i){ draw_box(a, left+i, top+i, right-i, bot-i, r, g, b); } } image **load_alphabet() { int i, j; const int nsize = 8; image **alphabets = calloc(nsize, sizeof(image)); for(j = 0; j < nsize; ++j){ alphabets[j] = calloc(128, sizeof(image)); for(i = 32; i < 127; ++i){ char buff[256]; sprintf(buff, "data/labels/%d_%d.png", i, j); alphabets[j][i] = load_image_color(buff, 0, 0); } } return alphabets; } // Creates array of detections with prob > thresh and fills best_class for them detection_with_class* get_actual_detections(detection *dets, int dets_num, float thresh, int* selected_detections_num) { int selected_num = 0; detection_with_class* result_arr = calloc(dets_num, sizeof(detection_with_class)); int i; for (i = 0; i < dets_num; ++i) { //提取到的特征目标循环判断 int best_class = -1; float best_class_prob = thresh; int j; for (j = 0; j < dets[i].classes; ++j) { //对检测到的目标的类别概率判断,赋予最大的概率类别 if (dets[i].prob[j] > best_class_prob ) { best_class = j; best_class_prob = dets[i].prob[j]; } } if (best_class >= 0) { //如果最大的类别概率大于0,该detction结构体赋给result_arr返回 result_arr[selected_num].det = dets[i]; result_arr[selected_num].best_class = best_class; ++selected_num; } } if (selected_detections_num) *selected_detections_num = selected_num; return result_arr; } // compare to sort detection** by bbox.x int compare_by_lefts(const void *a_ptr, const void *b_ptr) { const detection_with_class* a = (detection_with_class*)a_ptr; const detection_with_class* b = (detection_with_class*)b_ptr; const float delta = (a->det.bbox.x - a->det.bbox.w/2) - (b->det.bbox.x - b->det.bbox.w/2); return delta < 0 ? -1 : delta > 0 ? 1 : 0; } // compare to sort detection** by best_class probability int compare_by_probs(const void *a_ptr, const void *b_ptr) { const detection_with_class* a = (detection_with_class*)a_ptr; const detection_with_class* b = (detection_with_class*)b_ptr; float delta = a->det.prob[a->best_class] - b->det.prob[b->best_class]; return delta < 0 ? -1 : delta > 0 ? 1 : 0; } void draw_detections_v3(image im, detection *dets, int num, float thresh, char **names, image **alphabet, int classes, int ext_output) { int selected_detections_num; //实例化一个结构体并得到卷积后的各个特征的类名和最大概率 detection_with_class* selected_detections = get_actual_detections(dets, num, thresh, &selected_detections_num); // text output qsort(selected_detections, selected_detections_num, sizeof(*selected_detections), compare_by_lefts); int i; for (i = 0; i < selected_detections_num; ++i) { //对于检测到的目标的循环 int best_class = selected_detections[i].best_class; //上面返回的结构体中的best_class 原为const int /*************dspeia 20181026 修改label上的显示***************/ if (best_class != 1 && best_class != 2 && best_class != 3 && best_class != 0){ printf("%s: %.0f%% ******* image.c 292 *******", names[79], selected_detections[i].det.prob[best_class] * 100); //增加这一句,cmd上显示other,调用的coco.name文件,如何图片上显示other?? } else { printf("%s: %.0f%% ******* image.c 292 *******", names[best_class], selected_detections[i].det.prob[best_class] * 100); } if (ext_output) //如果cmd的命令该位置为真,可打印出各个目标的box位置 printf("t(left_x: %4.0f top_y: %4.0f width: %4.0f height: %4.0f)n", (selected_detections[i].det.bbox.x - selected_detections[i].det.bbox.w / 2)*im.w, (selected_detections[i].det.bbox.y - selected_detections[i].det.bbox.h / 2)*im.h, selected_detections[i].det.bbox.w*im.w, selected_detections[i].det.bbox.h*im.h); else printf("n"); //int j; //for (j = 0; j < classes; ++j) { //一个object有多个预测类别时进入,输出大于给定阈值的同一个目标的不同类别信息。控制是否进入for的是classes // if (selected_detections[i].det.prob[j] > thresh && j != best_class) { // printf("%s: %.0f%% ******image.c 303 ***** n", names[j], selected_detections[i].det.prob[j] * 100); // } //} } /*******************dspeia 20181017***********************/ // image output qsort(selected_detections, selected_detections_num, sizeof(*selected_detections), compare_by_probs); for (i = 0; i < selected_detections_num; ++i) { int width = im.h * .006; if (width < 1) width = 1; /* if(0){ width = pow(prob, 1./2.)*10+1; alphabet = 0; } */ //printf("%d %s: %.0f%%n", i, names[selected_detections[i].best_class], prob*100); int offset = selected_detections[i].best_class * 123457 % classes; float red = get_color(2, offset, classes); float green = get_color(1, offset, classes); float blue = get_color(0, offset, classes); float rgb[3]; //width = prob*20+2; //rgb值为了定义label框的颜色 rgb[0] = red; rgb[1] = green; rgb[2] = blue; box b = selected_detections[i].det.bbox; //printf("%f %f %f %fn", b.x, b.y, b.w, b.h); int left = (b.x - b.w / 2.)*im.w; int right = (b.x + b.w / 2.)*im.w; int top = (b.y - b.h / 2.)*im.h; int bot = (b.y + b.h / 2.)*im.h; if (left < 0) left = 0; if (right > im.w - 1) right = im.w - 1; if (top < 0) top = 0; if (bot > im.h - 1) bot = im.h - 1; /*******************************/ int the_class = selected_detections[i].best_class; //char cut_class[20] = { 0 }; //为了传类名到cut函数的方法一 //strcpy(cut_class, names[the_class]); //char cut_class = names[the_class]; float cut_pro = selected_detections[i].det.prob[the_class] * 100; printf("******355 **cut_class :%s ...........cut_class:%.0f n", names[the_class], cut_pro); //printf(cut_class); //printf("%f", cut_pro); // /******dspeia ****/ int pre_x = left; int pre_y = top; int pre_h = bot - top; int pre_w = right - left; save_cut_image(pre_x, pre_y, pre_h, pre_w, i, im, names, cut_pro, the_class); printf("/************ cut and save over *****************/ n"); /********************************/ //int b_x_center = (left + right) / 2; //int b_y_center = (top + bot) / 2; //int b_width = right - left; //int b_height = bot - top; //sprintf(labelstr, "%d x %d - w: %d, h: %d", b_x_center, b_y_center, b_width, b_height); draw_box_width(im, left, top, right, bot, width, red, green, blue); if (alphabet) { char labelstr[4096] = { 0 }; if (selected_detections[i].best_class != 0 && selected_detections[i].best_class != 1 && selected_detections[i].best_class != 2 && selected_detections[i].best_class != 3){ strcat(labelstr, names[79]); //加入这一句if,在label上写other } else { strcat(labelstr, names[selected_detections[i].best_class]); } //int j; //for (j = 0; j < classes; ++j) { //同一个object多个预测时,画多个框,注释了图片上仍然画第二框,只是cmd上不打印第二预测 // if (selected_detections[i].det.prob[j] > thresh && j != selected_detections[i].best_class) { // strcat(labelstr, ", "); // strcat(labelstr, names[j]); // } //} image label = get_label_v3(alphabet, labelstr, (im.h*.03)); //画出框,复制到im上 draw_label(im, top + width, left, label, rgb); //image* pic -> label; //const CvArr* label_copy = (CvArr*)&label; //********************** //cvShowImage("*ima 394 label", label_copy); //***********dspeia plus test free_image(label); } if (selected_detections[i].det.mask) { image mask = float_to_image(14, 14, 1, selected_detections[i].det.mask); image resized_mask = resize_image(mask, b.w*im.w, b.h*im.h); image tmask = threshold_image(resized_mask, .5); embed_image(tmask, im, left, top); free_image(mask); free_image(resized_mask); free_image(tmask); } } free(selected_detections); } /********************dspeia 20181017********************/ /*********** darknet.exe detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights */ void save_cut_image(int px, int py, int ph, int pw, int no, image m_img, char **names, float cut_pro, int the_class) { //cvShowImage("the enter", *m_img); image copy = copy_image(m_img); if (m_img.c == 3) rgbgr_image(copy); int x, y, k; char buff[256]; /*****************************/ //printf("%s: %.0f%% ******* image.c 292 *******", cut_clas, selected_detections[i].det.prob[best_class] * 100); /**********************************/ sprintf(buff, "results//%s%.0f%%%d.jpg", names[the_class], cut_pro, no); printf("****411** cut_class :%s ...........cut_class:%.0f ", names[the_class], cut_pro);// printf(names[the_class]); printf("%f",cut_pro); // IplImage *disp = cvCreateImage(cvSize(m_img.w, m_img.h), IPL_DEPTH_8U, m_img.c); //cvShowImage("**the enter", disp); //disp 为黑框乱码 int step = disp->widthStep; for (y = 0; y < m_img.h; ++y) { for (x = 0; x < m_img.w; ++x) { for (k = 0; k < m_img.c; ++k) { disp->imageData[y*step + x*m_img.c + k] = (unsigned char)(get_pixel(copy, x, y, k) * 255); } } } CvMat *pMat = cvCreateMatHeader(m_img.w, m_img.h, IPL_DEPTH_8U); //char rect_name[256]; //sprintf(rect_name, "%d_rect", no); CvRect rect = cvRect(px, py, pw, ph); cvGetSubRect(disp, pMat, rect); IplImage *pSubImg = cvCreateImage(cvSize(pw, ph), IPL_DEPTH_8U, m_img.c); cvGetImage(pMat, pSubImg); //printf("x=%d,y=%d,h=%d,w=%dn", px, py, ph, pw); cvSaveImage(buff, pSubImg, 0); //cvShowImage("average loss", pSubImg); //pSubImg为分割的子目标 //cvReleaseImage(&disp); //cvReleaseImage(&pMat); //cvReleaseImage(&rect); //memset(&rect, 0, sizeof(rect)); //cvReleaseImage(&pSubImg); //free(&rect); free_image(copy); } /**********************20181017******************************/ void draw_detections(image im, int num, float thresh, box *boxes, float **probs, char **names, image **alphabet, int classes) { int i; for(i = 0; i < num; ++i){ int class_id = max_index(probs[i], classes); float prob = probs[i][class_id]; if(prob > thresh){ for comparison with OpenCV version of DNN Darknet Yolo v2 //printf("n %f, %f, %f, %f, ", boxes[i].x, boxes[i].y, boxes[i].w, boxes[i].h); // int k; //for (k = 0; k < classes; ++k) { // printf("%f, ", probs[i][k]); //} //printf("n"); int width = im.h * .012; if(0){ width = pow(prob, 1./2.)*10+1; alphabet = 0; } int offset = class_id*123457 % classes; float red = get_color(2,offset,classes); float green = get_color(1,offset,classes); float blue = get_color(0,offset,classes); float rgb[3]; //width = prob*20+2; rgb[0] = red; rgb[1] = green; rgb[2] = blue; box b = boxes[i]; int left = (b.x-b.w/2.)*im.w; int right = (b.x+b.w/2.)*im.w; int top = (b.y-b.h/2.)*im.h; int bot = (b.y+b.h/2.)*im.h; /*******************dspeia 20181017***********************/ int pre_x = left; int pre_y = top; int pre_h = bot - top; int pre_w = right - left; /*******************dspeia 20181017***********************/ if(left < 0) left = 0; if(right > im.w-1) right = im.w-1; if(top < 0) top = 0; if(bot > im.h-1) bot = im.h-1; printf("%s: %.0f%% test*******************", names[class_id], prob * 100); /**********************/ printf("/**********image.c 505*** test和demo 出不来,不走这一步?****************/"); //save_cut_image(pre_x, pre_y, pre_h, pre_w, i, im); /*******************/ //printf(" - id: %d, x_center: %d, y_center: %d, width: %d, height: %d", // class_id, (right + left) / 2, (bot - top) / 2, right - left, bot - top); printf("n"); draw_box_width(im, left, top, right, bot, width, red, green, blue); if (alphabet) { image label = get_label(alphabet, names[class_id], (im.h*.03)/10); draw_label(im, top + width, left, label, rgb); } /*****************dspeia 20181017************************/ /*save_cut_image(pre_x, pre_y, pre_h, pre_w, i, im); printf("/");*/ /*****************dspeia 20181017************************/ /*********** darknet.exe detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights */ } } } #ifdef OPENCV **************1019最新版本,改动此函数,demo 视频用 void draw_detections_cv_v3(IplImage* show_img, detection *dets, int num, float thresh, char **names, image **alphabet, int classes, int ext_output) { int i, j; if (!show_img) return; static int frame_id = 0; frame_id++; /**********dspeia 20181019***** 新加视频裁剪小目标 *******/ /*int selected_detections_num; detection_with_class* selected_detections = get_actual_detections(dets, num, thresh, &selected_detections_num);*/ /***********************/ for (i = 0; i < num; ++i) { char labelstr[4096] = { 0 }; int class_id = -1; for (j = 0; j < classes; ++j) { if (dets[i].prob[j] > thresh) { if (class_id < 0) { strcat(labelstr, names[j]); class_id = j; } else { strcat(labelstr, ", "); strcat(labelstr, names[j]); } printf(" **** image.c 562 ***** %s: %.0f%% ", names[j], dets[i].prob[j] * 100); ///***************************新加,视频裁剪小目标*************/ IplImage* cut = show_img; //box b = selected_detections[i].det.bbox; //int left = (b.x - b.w / 2.)* show_img->width; //int right = (b.x + b.w / 2.)*show_img->width; //int top = (b.y - b.h / 2.)*show_img->height; //int bot = (b.y + b.h / 2.)*show_img->height; //if (left < 0) left = 0; //if (right > show_img->width - 1) right = show_img->width - 1; //if (top < 0) top = 0; //if (bot > show_img->height - 1) bot = show_img->height - 1; //int pre_x = left; //int pre_y = top; //int pre_h = bot - top; //int pre_w = right - left; image m = show_img; network net = parse_network_cfg_custom(cfgfile, 1); //image im = load_image(show_img, 0, 0, 3); //int the_class = names[j]; char cut_class[20] = { 0 }; //为了传类名到cut函数的方法一 strcpy(cut_class, names[the_class]); char cut_class = names[the_class]; //float cut_pro = dets[i].prob[j] * 100; //save_cut_image(pre_x, pre_y, pre_h, pre_w, i, im, names, cut_pro, the_class); //printf("/************ cut and save over *****************/"); ///********************************/ } } if (class_id >= 0) { int width = show_img->height * .006; //if(0){ //width = pow(prob, 1./2.)*10+1; //alphabet = 0; //} //printf("%d %s: %.0f%%n", i, names[class_id], prob*100); int offset = class_id * 123457 % classes; float red = get_color(2, offset, classes); float green = get_color(1, offset, classes); float blue = get_color(0, offset, classes); float rgb[3]; //width = prob*20+2; rgb[0] = red; rgb[1] = green; rgb[2] = blue; box b = dets[i].bbox; b.w = (b.w < 1) ? b.w : 1; b.h = (b.h < 1) ? b.h : 1; b.x = (b.x < 1) ? b.x : 1; b.y = (b.y < 1) ? b.y : 1; //printf("%f %f %f %fn", b.x, b.y, b.w, b.h); int left = (b.x - b.w / 2.)*show_img->width; int right = (b.x + b.w / 2.)*show_img->width; int top = (b.y - b.h / 2.)*show_img->height; int bot = (b.y + b.h / 2.)*show_img->height; if (left < 0) left = 0; if (right > show_img->width - 1) right = show_img->width - 1; if (top < 0) top = 0; if (bot > show_img->height - 1) bot = show_img->height - 1; //int b_x_center = (left + right) / 2; //int b_y_center = (top + bot) / 2; //int b_width = right - left; //int b_height = bot - top; //sprintf(labelstr, "%d x %d - w: %d, h: %d", b_x_center, b_y_center, b_width, b_height); float const font_size = show_img->height / 1000.F; CvPoint pt1, pt2, pt_text, pt_text_bg1, pt_text_bg2; pt1.x = left; pt1.y = top; pt2.x = right; pt2.y = bot; pt_text.x = left; pt_text.y = top - 12; pt_text_bg1.x = left; pt_text_bg1.y = top - (10 + 25 * font_size); pt_text_bg2.x = right; pt_text_bg2.y = top; CvScalar color; color.val[0] = red * 256; color.val[1] = green * 256; color.val[2] = blue * 256; // you should create directory: result_img //static int copied_frame_id = -1; //static IplImage* copy_img = NULL; //if (copied_frame_id != frame_id) { // copied_frame_id = frame_id; // if(copy_img == NULL) copy_img = cvCreateImage(cvSize(show_img->width, show_img->height), show_img->depth, show_img->nChannels); // cvCopy(show_img, copy_img, 0); //} //static int img_id = 0; //img_id++; //char image_name[1024]; //sprintf(image_name, "result_img/img_%d_%d_%d.jpg", frame_id, img_id, class_id); //CvRect rect = cvRect(pt1.x, pt1.y, pt2.x - pt1.x, pt2.y - pt1.y); //cvSetImageROI(copy_img, rect); //cvSaveImage(image_name, copy_img, 0); //cvResetImageROI(copy_img); cvRectangle(show_img, pt1, pt2, color, width, 8, 0); if (ext_output) printf("t(****image.c 644**left_x: %4.0f top_y: %4.0f width: %4.0f height: %4.0f)n", (float)left, (float)top, b.w*show_img->width, b.h*show_img->height); else printf("n"); cvRectangle(show_img, pt_text_bg1, pt_text_bg2, color, width, 8, 0); cvRectangle(show_img, pt_text_bg1, pt_text_bg2, color, CV_FILLED, 8, 0); // filled CvScalar black_color; black_color.val[0] = 0; CvFont font; cvInitFont(&font, CV_FONT_HERSHEY_SIMPLEX, font_size, font_size, 0, font_size * 3, 8); cvPutText(show_img, labelstr, pt_text, &font, black_color); } } if (ext_output) { fflush(stdout); } } void draw_detections_cv(IplImage* show_img, int num, float thresh, box *boxes, float **probs, char **names, image **alphabet, int classes) { int i; for (i = 0; i < num; ++i) { int class_id = max_index(probs[i], classes); float prob = probs[i][class_id]; if (prob > thresh) { int width = show_img->height * .012; if (0) { width = pow(prob, 1. / 2.) * 10 + 1; alphabet = 0; } printf("%s: %.0f%%n", names[class_id], prob * 100); int offset = class_id * 123457 % classes; float red = get_color(2, offset, classes); float green = get_color(1, offset, classes); float blue = get_color(0, offset, classes); float rgb[3]; //width = prob*20+2; rgb[0] = red; rgb[1] = green; rgb[2] = blue; box b = boxes[i]; int left = (b.x - b.w / 2.)*show_img->width; int right = (b.x + b.w / 2.)*show_img->width; int top = (b.y - b.h / 2.)*show_img->height; int bot = (b.y + b.h / 2.)*show_img->height; if (left < 0) left = 0; if (right > show_img->width - 1) right = show_img->width - 1; if (top < 0) top = 0; if (bot > show_img->height - 1) bot = show_img->height - 1; float const font_size = show_img->height / 1000.F; CvPoint pt1, pt2, pt_text, pt_text_bg1, pt_text_bg2; pt1.x = left; pt1.y = top; pt2.x = right; pt2.y = bot; pt_text.x = left; pt_text.y = top - 12; pt_text_bg1.x = left; pt_text_bg1.y = top - (10+25*font_size); pt_text_bg2.x = right; pt_text_bg2.y = top; CvScalar color; color.val[0] = red * 256; color.val[1] = green * 256; color.val[2] = blue * 256; cvRectangle(show_img, pt1, pt2, color, width, 8, 0); //printf("left=%d, right=%d, top=%d, bottom=%d, obj_id=%d, obj=%s n", left, right, top, bot, class_id, names[class_id]); cvRectangle(show_img, pt_text_bg1, pt_text_bg2, color, width, 8, 0); cvRectangle(show_img, pt_text_bg1, pt_text_bg2, color, CV_FILLED, 8, 0); // filled CvScalar black_color; black_color.val[0] = 0; CvFont font; cvInitFont(&font, CV_FONT_HERSHEY_SIMPLEX, font_size, font_size, 0, font_size * 3, 8); cvPutText(show_img, names[class_id], pt_text, &font, black_color); } } } IplImage* draw_train_chart(float max_img_loss, int max_batches, int number_of_lines, int img_size) { int img_offset = 50; int draw_size = img_size - img_offset; IplImage* img = cvCreateImage(cvSize(img_size, img_size), 8, 3); cvSet(img, CV_RGB(255, 255, 255), 0); CvPoint pt1, pt2, pt_text; CvFont font; cvInitFont(&font, CV_FONT_HERSHEY_COMPLEX_SMALL, 0.7, 0.7, 0, 1, CV_AA); char char_buff[100]; int i; // vertical lines pt1.x = img_offset; pt2.x = img_size, pt_text.x = 10; for (i = 1; i <= number_of_lines; ++i) { pt1.y = pt2.y = (float)i * draw_size / number_of_lines; cvLine(img, pt1, pt2, CV_RGB(224, 224, 224), 1, 8, 0); if (i % 10 == 0) { sprintf(char_buff, "%2.1f", max_img_loss*(number_of_lines - i) / number_of_lines); pt_text.y = pt1.y + 5; cvPutText(img, char_buff, pt_text, &font, CV_RGB(0, 0, 0)); cvLine(img, pt1, pt2, CV_RGB(128, 128, 128), 1, 8, 0); } } // horizontal lines pt1.y = draw_size; pt2.y = 0, pt_text.y = draw_size + 15; for (i = 0; i <= number_of_lines; ++i) { pt1.x = pt2.x = img_offset + (float)i * draw_size / number_of_lines; cvLine(img, pt1, pt2, CV_RGB(224, 224, 224), 1, 8, 0); if (i % 10 == 0) { sprintf(char_buff, "%d", max_batches * i / number_of_lines); pt_text.x = pt1.x - 20; cvPutText(img, char_buff, pt_text, &font, CV_RGB(0, 0, 0)); cvLine(img, pt1, pt2, CV_RGB(128, 128, 128), 1, 8, 0); } } cvPutText(img, "Iteration number", cvPoint(draw_size / 2, img_size - 10), &font, CV_RGB(0, 0, 0)); cvPutText(img, "Press 's' to save: chart.jpg", cvPoint(5, img_size - 10), &font, CV_RGB(0, 0, 0)); printf(" If error occurs - run training with flag: -dont_show n"); cvNamedWindow("average loss", CV_WINDOW_NORMAL); cvMoveWindow("average loss", 0, 0); cvResizeWindow("average loss", img_size, img_size); cvShowImage("average loss", img); cvWaitKey(20); return img; } void draw_train_loss(IplImage* img, int img_size, float avg_loss, float max_img_loss, int current_batch, int max_batches) { int img_offset = 50; int draw_size = img_size - img_offset; CvFont font; cvInitFont(&font, CV_FONT_HERSHEY_COMPLEX_SMALL, 0.7, 0.7, 0, 1, CV_AA); char char_buff[100]; CvPoint pt1, pt2; pt1.x = img_offset + draw_size * (float)current_batch / max_batches; pt1.y = draw_size * (1 - avg_loss / max_img_loss); if (pt1.y < 0) pt1.y = 1; cvCircle(img, pt1, 1, CV_RGB(0, 0, 255), CV_FILLED, 8, 0); sprintf(char_buff, "current avg loss = %2.4f", avg_loss); pt1.x = img_size / 2, pt1.y = 30; pt2.x = pt1.x + 250, pt2.y = pt1.y + 20; cvRectangle(img, pt1, pt2, CV_RGB(255, 255, 255), CV_FILLED, 8, 0); pt1.y += 15; cvPutText(img, char_buff, pt1, &font, CV_RGB(0, 0, 0)); cvShowImage("average loss", img); int k = cvWaitKey(20); if (k == 's' || current_batch == (max_batches-1)) cvSaveImage("chart.jpg", img, 0); } #endif // OPENCV void transpose_image(image im) { assert(im.w == im.h); int n, m; int c; for(c = 0; c < im.c; ++c){ for(n = 0; n < im.w-1; ++n){ for(m = n + 1; m < im.w; ++m){ float swap = im.data[m + im.w*(n + im.h*c)]; im.data[m + im.w*(n + im.h*c)] = im.data[n + im.w*(m + im.h*c)]; im.data[n + im.w*(m + im.h*c)] = swap; } } } } void rotate_image_cw(image im, int times) { assert(im.w == im.h); times = (times + 400) % 4; int i, x, y, c; int n = im.w; for(i = 0; i < times; ++i){ for(c = 0; c < im.c; ++c){ for(x = 0; x < n/2; ++x){ for(y = 0; y < (n-1)/2 + 1; ++y){ float temp = im.data[y + im.w*(x + im.h*c)]; im.data[y + im.w*(x + im.h*c)] = im.data[n-1-x + im.w*(y + im.h*c)]; im.data[n-1-x + im.w*(y + im.h*c)] = im.data[n-1-y + im.w*(n-1-x + im.h*c)]; im.data[n-1-y + im.w*(n-1-x + im.h*c)] = im.data[x + im.w*(n-1-y + im.h*c)]; im.data[x + im.w*(n-1-y + im.h*c)] = temp; } } } } } void flip_image(image a) { int i,j,k; for(k = 0; k < a.c; ++k){ for(i = 0; i < a.h; ++i){ for(j = 0; j < a.w/2; ++j){ int index = j + a.w*(i + a.h*(k)); int flip = (a.w - j - 1) + a.w*(i + a.h*(k)); float swap = a.data[flip]; a.data[flip] = a.data[index]; a.data[index] = swap; } } } } image image_distance(image a, image b) { int i,j; image dist = make_image(a.w, a.h, 1); for(i = 0; i < a.c; ++i){ for(j = 0; j < a.h*a.w; ++j){ dist.data[j] += pow(a.data[i*a.h*a.w+j]-b.data[i*a.h*a.w+j],2); } } for(j = 0; j < a.h*a.w; ++j){ dist.data[j] = sqrt(dist.data[j]); } return dist; } void embed_image(image source, image dest, int dx, int dy) { int x,y,k; for(k = 0; k < source.c; ++k){ for(y = 0; y < source.h; ++y){ for(x = 0; x < source.w; ++x){ float val = get_pixel(source, x,y,k); set_pixel(dest, dx+x, dy+y, k, val); } } } } image collapse_image_layers(image source, int border) { int h = source.h; h = (h+border)*source.c - border; image dest = make_image(source.w, h, 1); int i; for(i = 0; i < source.c; ++i){ image layer = get_image_layer(source, i); int h_offset = i*(source.h+border); embed_image(layer, dest, 0, h_offset); free_image(layer); } return dest; } void constrain_image(image im) { int i; for(i = 0; i < im.w*im.h*im.c; ++i){ if(im.data[i] < 0) im.data[i] = 0; if(im.data[i] > 1) im.data[i] = 1; } } void normalize_image(image p) { int i; float min = 9999999; float max = -999999; for(i = 0; i < p.h*p.w*p.c; ++i){ float v = p.data[i]; if(v < min) min = v; if(v > max) max = v; } if(max - min < .000000001){ min = 0; max = 1; } for(i = 0; i < p.c*p.w*p.h; ++i){ p.data[i] = (p.data[i] - min)/(max-min); } } void normalize_image2(image p) { float *min = calloc(p.c, sizeof(float)); float *max = calloc(p.c, sizeof(float)); int i,j; for(i = 0; i < p.c; ++i) min[i] = max[i] = p.data[i*p.h*p.w]; for(j = 0; j < p.c; ++j){ for(i = 0; i < p.h*p.w; ++i){ float v = p.data[i+j*p.h*p.w]; if(v < min[j]) min[j] = v; if(v > max[j]) max[j] = v; } } for(i = 0; i < p.c; ++i){ if(max[i] - min[i] < .000000001){ min[i] = 0; max[i] = 1; } } for(j = 0; j < p.c; ++j){ for(i = 0; i < p.w*p.h; ++i){ p.data[i+j*p.h*p.w] = (p.data[i+j*p.h*p.w] - min[j])/(max[j]-min[j]); } } free(min); free(max); } image copy_image(image p) { image copy = p; copy.data = calloc(p.h*p.w*p.c, sizeof(float)); memcpy(copy.data, p.data, p.h*p.w*p.c*sizeof(float)); return copy; } void rgbgr_image(image im) { int i; for(i = 0; i < im.w*im.h; ++i){ float swap = im.data[i]; im.data[i] = im.data[i+im.w*im.h*2]; im.data[i+im.w*im.h*2] = swap; } } #ifdef OPENCV void show_image_cv(image p, const char *name) { int x,y,k; image copy = copy_image(p); constrain_image(copy); if(p.c == 3) rgbgr_image(copy); //normalize_image(copy); char buff[256]; //sprintf(buff, "%s (%d)", name, windows); sprintf(buff, "%s", name); IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c); int step = disp->widthStep; cvNamedWindow(buff, CV_WINDOW_NORMAL); //cvMoveWindow(buff, 100*(windows%10) + 200*(windows/10), 100*(windows%10)); ++windows; for(y = 0; y < p.h; ++y){ for(x = 0; x < p.w; ++x){ for(k= 0; k < p.c; ++k){ disp->imageData[y*step + x*p.c + k] = (unsigned char)(get_pixel(copy,x,y,k)*255); } } } free_image(copy); if(0){ int w = 448; int h = w*p.h/p.w; if(h > 1000){ h = 1000; w = h*p.w/p.h; } IplImage *buffer = disp; disp = cvCreateImage(cvSize(w, h), buffer->depth, buffer->nChannels); cvResize(buffer, disp, CV_INTER_LINEAR); cvReleaseImage(&buffer); } cvShowImage(buff, disp); cvReleaseImage(&disp); } void show_image_cv_ipl(IplImage *disp, const char *name) //demo.c 传过来的,*disp为检测后的图片 *name为窗口名称字符串 { if (disp == NULL) return; char buff[256]; //sprintf(buff, "%s (%d)", name, windows); sprintf(buff, "%s", name); //name写入buff 显示合成视频在demo窗口上 cvNamedWindow(buff, CV_WINDOW_NORMAL); //cvMoveWindow(buff, 100*(windows%10) + 200*(windows/10), 100*(windows%10)); ++windows; cvShowImage(buff, disp); //框合成到demo,展示 //cvReleaseImage(&disp); } #endif void show_image(image p, const char *name) { #ifdef OPENCV show_image_cv(p, name); #else fprintf(stderr, "Not compiled with OpenCV, saving to %s.png insteadn", name); save_image(p, name); #endif } #ifdef OPENCV image ipl_to_image(IplImage* src) { unsigned char *data = (unsigned char *)src->imageData; int h = src->height; int w = src->width; int c = src->nChannels; int step = src->widthStep; image out = make_image(w, h, c); int i, j, k, count=0;; for(k= 0; k < c; ++k){ for(i = 0; i < h; ++i){ for(j = 0; j < w; ++j){ out.data[count++] = data[i*step + j*c + k]/255.; } } } return out; } image load_image_cv(char *filename, int channels) { IplImage* src = 0; int flag = -1; if (channels == 0) flag = 1; else if (channels == 1) flag = 0; else if (channels == 3) flag = 1; else { fprintf(stderr, "OpenCV can't force load with %d channelsn", channels); } if( (src = cvLoadImage(filename, flag)) == 0 ) { char shrinked_filename[1024]; if (strlen(filename) >= 1024) sprintf(shrinked_filename, "name is too long"); else sprintf(shrinked_filename, "%s", filename); fprintf(stderr, "*image.c 1132*Cannot load image "%s"n", shrinked_filename); FILE* fw = fopen("bad.list", "a"); fwrite(shrinked_filename, sizeof(char), strlen(shrinked_filename), fw); char *new_line = "n"; fwrite(new_line, sizeof(char), strlen(new_line), fw); fclose(fw); if (check_mistakes) getchar(); return make_image(10,10,3); //exit(EXIT_FAILURE); } image out = ipl_to_image(src); cvReleaseImage(&src); if (out.c > 1) rgbgr_image(out); return out; } image get_image_from_stream(CvCapture *cap) { IplImage* src = cvQueryFrame(cap); if (!src) return make_empty_image(0,0,0); image im = ipl_to_image(src); rgbgr_image(im); return im; } image get_image_from_stream_cpp(CvCapture *cap) { //IplImage* src = cvQueryFrame(cap); IplImage* src; static int once = 1; if (once) { once = 0; do { src = get_webcam_frame(cap); if (!src) return make_empty_image(0, 0, 0); } while (src->width < 1 || src->height < 1 || src->nChannels < 1); printf("Video stream: %d x %d n", src->width, src->height); } else src = get_webcam_frame(cap); if (!src) return make_empty_image(0, 0, 0); image im = ipl_to_image(src); rgbgr_image(im); return im; } int wait_for_stream(CvCapture *cap, IplImage* src, int dont_close) { if (!src) { if (dont_close) src = cvCreateImage(cvSize(416, 416), IPL_DEPTH_8U, 3); else return 0; } if (src->width < 1 || src->height < 1 || src->nChannels < 1) { if (dont_close) { cvReleaseImage(&src); int z = 0; for (z = 0; z < 20; ++z) { get_webcam_frame(cap); cvReleaseImage(&src); } src = cvCreateImage(cvSize(416, 416), IPL_DEPTH_8U, 3); } else return 0; } return 1; } image get_image_from_stream_resize(CvCapture *cap, int w, int h, int c, IplImage** in_img, int cpp_video_capture, int dont_close) { c = c ? c : 3; IplImage* src; if (cpp_video_capture) { static int once = 1; if (once) { once = 0; do { src = get_webcam_frame(cap); if (!src) return make_empty_image(0, 0, 0); } while (src->width < 1 || src->height < 1 || src->nChannels < 1); printf("Video stream: %d x %d n", src->width, src->height); } else src = get_webcam_frame(cap); } else src = cvQueryFrame(cap); if (cpp_video_capture) if(!wait_for_stream(cap, src, dont_close)) return make_empty_image(0, 0, 0); IplImage* new_img = cvCreateImage(cvSize(w, h), IPL_DEPTH_8U, c); *in_img = cvCreateImage(cvSize(src->width, src->height), IPL_DEPTH_8U, c); cvResize(src, *in_img, CV_INTER_LINEAR); cvResize(src, new_img, CV_INTER_LINEAR); image im = ipl_to_image(new_img); cvReleaseImage(&new_img); if (cpp_video_capture) cvReleaseImage(&src); if (c>1) rgbgr_image(im); return im; } image get_image_from_stream_letterbox(CvCapture *cap, int w, int h, int c, IplImage** in_img, int cpp_video_capture, int dont_close) { c = c ? c : 3; IplImage* src; if (cpp_video_capture) { static int once = 1; if (once) { once = 0; do { src = get_webcam_frame(cap); if (!src) return make_empty_image(0, 0, 0); } while (src->width < 1 || src->height < 1 || src->nChannels < 1); printf("Video stream: %d x %d n", src->width, src->height); } else src = get_webcam_frame(cap); } else src = cvQueryFrame(cap); if (cpp_video_capture) if (!wait_for_stream(cap, src, dont_close)) return make_empty_image(0, 0, 0); *in_img = cvCreateImage(cvSize(src->width, src->height), IPL_DEPTH_8U, c); cvResize(src, *in_img, CV_INTER_LINEAR); image tmp = ipl_to_image(src); image im = letterbox_image(tmp, w, h); free_image(tmp); if (cpp_video_capture) cvReleaseImage(&src); if (c>1) rgbgr_image(im); return im; } int get_stream_fps(CvCapture *cap, int cpp_video_capture) { int fps = 25; if (cpp_video_capture) { fps = get_stream_fps_cpp(cap); } else { fps = cvGetCaptureProperty(cap, CV_CAP_PROP_FPS); } return fps; } void save_image_jpg(image p, const char *name) { image copy = copy_image(p); if(p.c == 3) rgbgr_image(copy); int x,y,k; char buff[256]; sprintf(buff, "%s.jpg", name); IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c); int step = disp->widthStep; for(y = 0; y < p.h; ++y){ for(x = 0; x < p.w; ++x){ for(k= 0; k < p.c; ++k){ disp->imageData[y*step + x*p.c + k] = (unsigned char)(get_pixel(copy,x,y,k)*255); } } } cvSaveImage(buff, disp,0); cvReleaseImage(&disp); free_image(copy); } #endif void save_image_png(image im, const char *name) { char buff[256]; //sprintf(buff, "%s (%d)", name, windows); sprintf(buff, "%s.png", name); unsigned char *data = calloc(im.w*im.h*im.c, sizeof(char)); int i,k; for(k = 0; k < im.c; ++k){ for(i = 0; i < im.w*im.h; ++i){ data[i*im.c+k] = (unsigned char) (255*im.data[i + k*im.w*im.h]); } } int success = stbi_write_png(buff, im.w, im.h, im.c, data, im.w*im.c); free(data); if(!success) fprintf(stderr, "Failed to write image %sn", buff); } void save_image(image im, const char *name) { #ifdef OPENCV save_image_jpg(im, name); #else save_image_png(im, name); #endif } void show_image_layers(image p, char *name) { int i; char buff[256]; for(i = 0; i < p.c; ++i){ sprintf(buff, "%s - Layer %d", name, i); image layer = get_image_layer(p, i); show_image(layer, buff); free_image(layer); } } void show_image_collapsed(image p, char *name) { image c = collapse_image_layers(p, 1); show_image(c, name); free_image(c); } image make_empty_image(int w, int h, int c) { image out; out.data = 0; out.h = h; out.w = w; out.c = c; return out; } image make_image(int w, int h, int c) { image out = make_empty_image(w,h,c); out.data = calloc(h*w*c, sizeof(float)); return out; } image make_random_image(int w, int h, int c) { image out = make_empty_image(w,h,c); out.data = calloc(h*w*c, sizeof(float)); int i; for(i = 0; i < w*h*c; ++i){ out.data[i] = (rand_normal() * .25) + .5; } return out; } image float_to_image(int w, int h, int c, float *data) { image out = make_empty_image(w,h,c); out.data = data; return out; } image rotate_crop_image(image im, float rad, float s, int w, int h, float dx, float dy, float aspect) { int x, y, c; float cx = im.w/2.; float cy = im.h/2.; image rot = make_image(w, h, im.c); for(c = 0; c < im.c; ++c){ for(y = 0; y < h; ++y){ for(x = 0; x < w; ++x){ float rx = cos(rad)*((x - w/2.)/s*aspect + dx/s*aspect) - sin(rad)*((y - h/2.)/s + dy/s) + cx; float ry = sin(rad)*((x - w/2.)/s*aspect + dx/s*aspect) + cos(rad)*((y - h/2.)/s + dy/s) + cy; float val = bilinear_interpolate(im, rx, ry, c); set_pixel(rot, x, y, c, val); } } } return rot; } image rotate_image(image im, float rad) { int x, y, c; float cx = im.w/2.; float cy = im.h/2.; image rot = make_image(im.w, im.h, im.c); for(c = 0; c < im.c; ++c){ for(y = 0; y < im.h; ++y){ for(x = 0; x < im.w; ++x){ float rx = cos(rad)*(x-cx) - sin(rad)*(y-cy) + cx; float ry = sin(rad)*(x-cx) + cos(rad)*(y-cy) + cy; float val = bilinear_interpolate(im, rx, ry, c); set_pixel(rot, x, y, c, val); } } } return rot; } void translate_image(image m, float s) { int i; for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] += s; } void scale_image(image m, float s) { int i; for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] *= s; } image crop_image(image im, int dx, int dy, int w, int h) { image cropped = make_image(w, h, im.c); int i, j, k; for(k = 0; k < im.c; ++k){ for(j = 0; j < h; ++j){ for(i = 0; i < w; ++i){ int r = j + dy; int c = i + dx; float val = 0; r = constrain_int(r, 0, im.h-1); c = constrain_int(c, 0, im.w-1); if (r >= 0 && r < im.h && c >= 0 && c < im.w) { val = get_pixel(im, c, r, k); } set_pixel(cropped, i, j, k, val); } } } return cropped; } int best_3d_shift_r(image a, image b, int min, int max) { if(min == max) return min; int mid = floor((min + max) / 2.); image c1 = crop_image(b, 0, mid, b.w, b.h); image c2 = crop_image(b, 0, mid+1, b.w, b.h); float d1 = dist_array(c1.data, a.data, a.w*a.h*a.c, 10); float d2 = dist_array(c2.data, a.data, a.w*a.h*a.c, 10); free_image(c1); free_image(c2); if(d1 < d2) return best_3d_shift_r(a, b, min, mid); else return best_3d_shift_r(a, b, mid+1, max); } int best_3d_shift(image a, image b, int min, int max) { int i; int best = 0; float best_distance = FLT_MAX; for(i = min; i <= max; i += 2){ image c = crop_image(b, 0, i, b.w, b.h); float d = dist_array(c.data, a.data, a.w*a.h*a.c, 100); if(d < best_distance){ best_distance = d; best = i; } printf("%d %fn", i, d); free_image(c); } return best; } void composite_3d(char *f1, char *f2, char *out, int delta) { if(!out) out = "out"; image a = load_image(f1, 0,0,0); image b = load_image(f2, 0,0,0); int shift = best_3d_shift_r(a, b, -a.h/100, a.h/100); image c1 = crop_image(b, 10, shift, b.w, b.h); float d1 = dist_array(c1.data, a.data, a.w*a.h*a.c, 100); image c2 = crop_image(b, -10, shift, b.w, b.h); float d2 = dist_array(c2.data, a.data, a.w*a.h*a.c, 100); if(d2 < d1 && 0){ image swap = a; a = b; b = swap; shift = -shift; printf("swapped, %dn", shift); } else{ printf("%dn", shift); } image c = crop_image(b, delta, shift, a.w, a.h); int i; for(i = 0; i < c.w*c.h; ++i){ c.data[i] = a.data[i]; } #ifdef OPENCV save_image_jpg(c, out); #else save_image(c, out); #endif } void fill_image(image m, float s) { int i; for (i = 0; i < m.h*m.w*m.c; ++i) m.data[i] = s; } void letterbox_image_into(image im, int w, int h, image boxed) { int new_w = im.w; int new_h = im.h; if (((float)w / im.w) < ((float)h / im.h)) { new_w = w; new_h = (im.h * w) / im.w; } else { new_h = h; new_w = (im.w * h) / im.h; } image resized = resize_image(im, new_w, new_h); embed_image(resized, boxed, (w - new_w) / 2, (h - new_h) / 2); free_image(resized); } image letterbox_image(image im, int w, int h) { int new_w = im.w; int new_h = im.h; if (((float)w / im.w) < ((float)h / im.h)) { new_w = w; new_h = (im.h * w) / im.w; } else { new_h = h; new_w = (im.w * h) / im.h; } image resized = resize_image(im, new_w, new_h); image boxed = make_image(w, h, im.c); fill_image(boxed, .5); //int i; //for(i = 0; i < boxed.w*boxed.h*boxed.c; ++i) boxed.data[i] = 0; embed_image(resized, boxed, (w - new_w) / 2, (h - new_h) / 2); free_image(resized); return boxed; } image resize_max(image im, int max) { int w = im.w; int h = im.h; if(w > h){ h = (h * max) / w; w = max; } else { w = (w * max) / h; h = max; } if(w == im.w && h == im.h) return im; image resized = resize_image(im, w, h); return resized; } image resize_min(image im, int min) { int w = im.w; int h = im.h; if(w < h){ h = (h * min) / w; w = min; } else { w = (w * min) / h; h = min; } if(w == im.w && h == im.h) return im; image resized = resize_image(im, w, h); return resized; } image random_crop_image(image im, int w, int h) { int dx = rand_int(0, im.w - w); int dy = rand_int(0, im.h - h); image crop = crop_image(im, dx, dy, w, h); return crop; } image random_augment_image(image im, float angle, float aspect, int low, int high, int size) { aspect = rand_scale(aspect); int r = rand_int(low, high); int min = (im.h < im.w*aspect) ? im.h : im.w*aspect; float scale = (float)r / min; float rad = rand_uniform(-angle, angle) * TWO_PI / 360.; float dx = (im.w*scale/aspect - size) / 2.; float dy = (im.h*scale - size) / 2.; if(dx < 0) dx = 0; if(dy < 0) dy = 0; dx = rand_uniform(-dx, dx); dy = rand_uniform(-dy, dy); image crop = rotate_crop_image(im, rad, scale, size, size, dx, dy, aspect); return crop; } float three_way_max(float a, float b, float c) { return (a > b) ? ( (a > c) ? a : c) : ( (b > c) ? b : c) ; } float three_way_min(float a, float b, float c) { return (a < b) ? ( (a < c) ? a : c) : ( (b < c) ? b : c) ; } // http://www.cs.rit.edu/~ncs/color/t_convert.html void rgb_to_hsv(image im) { assert(im.c == 3); int i, j; float r, g, b; float h, s, v; for(j = 0; j < im.h; ++j){ for(i = 0; i < im.w; ++i){ r = get_pixel(im, i , j, 0); g = get_pixel(im, i , j, 1); b = get_pixel(im, i , j, 2); float max = three_way_max(r,g,b); float min = three_way_min(r,g,b); float delta = max - min; v = max; if(max == 0){ s = 0; h = 0; }else{ s = delta/max; if(r == max){ h = (g - b) / delta; } else if (g == max) { h = 2 + (b - r) / delta; } else { h = 4 + (r - g) / delta; } if (h < 0) h += 6; h = h/6.; } set_pixel(im, i, j, 0, h); set_pixel(im, i, j, 1, s); set_pixel(im, i, j, 2, v); } } } void hsv_to_rgb(image im) { assert(im.c == 3); int i, j; float r, g, b; float h, s, v; float f, p, q, t; for(j = 0; j < im.h; ++j){ for(i = 0; i < im.w; ++i){ h = 6 * get_pixel(im, i , j, 0); s = get_pixel(im, i , j, 1); v = get_pixel(im, i , j, 2); if (s == 0) { r = g = b = v; } else { int index = floor(h); f = h - index; p = v*(1-s); q = v*(1-s*f); t = v*(1-s*(1-f)); if(index == 0){ r = v; g = t; b = p; } else if(index == 1){ r = q; g = v; b = p; } else if(index == 2){ r = p; g = v; b = t; } else if(index == 3){ r = p; g = q; b = v; } else if(index == 4){ r = t; g = p; b = v; } else { r = v; g = p; b = q; } } set_pixel(im, i, j, 0, r); set_pixel(im, i, j, 1, g); set_pixel(im, i, j, 2, b); } } } image grayscale_image(image im) { assert(im.c == 3); int i, j, k; image gray = make_image(im.w, im.h, 1); float scale[] = {0.587, 0.299, 0.114}; for(k = 0; k < im.c; ++k){ for(j = 0; j < im.h; ++j){ for(i = 0; i < im.w; ++i){ gray.data[i+im.w*j] += scale[k]*get_pixel(im, i, j, k); } } } return gray; } image threshold_image(image im, float thresh) { int i; image t = make_image(im.w, im.h, im.c); for(i = 0; i < im.w*im.h*im.c; ++i){ t.data[i] = im.data[i]>thresh ? 1 : 0; } return t; } image blend_image(image fore, image back, float alpha) { assert(fore.w == back.w && fore.h == back.h && fore.c == back.c); image blend = make_image(fore.w, fore.h, fore.c); int i, j, k; for(k = 0; k < fore.c; ++k){ for(j = 0; j < fore.h; ++j){ for(i = 0; i < fore.w; ++i){ float val = alpha * get_pixel(fore, i, j, k) + (1 - alpha)* get_pixel(back, i, j, k); set_pixel(blend, i, j, k, val); } } } return blend; } void scale_image_channel(image im, int c, float v) { int i, j; for(j = 0; j < im.h; ++j){ for(i = 0; i < im.w; ++i){ float pix = get_pixel(im, i, j, c); pix = pix*v; set_pixel(im, i, j, c, pix); } } } void translate_image_channel(image im, int c, float v) { int i, j; for(j = 0; j < im.h; ++j){ for(i = 0; i < im.w; ++i){ float pix = get_pixel(im, i, j, c); pix = pix+v; set_pixel(im, i, j, c, pix); } } } image binarize_image(image im) { image c = copy_image(im); int i; for(i = 0; i < im.w * im.h * im.c; ++i){ if(c.data[i] > .5) c.data[i] = 1; else c.data[i] = 0; } return c; } void saturate_image(image im, float sat) { rgb_to_hsv(im); scale_image_channel(im, 1, sat); hsv_to_rgb(im); constrain_image(im); } void hue_image(image im, float hue) { rgb_to_hsv(im); int i; for(i = 0; i < im.w*im.h; ++i){ im.data[i] = im.data[i] + hue; if (im.data[i] > 1) im.data[i] -= 1; if (im.data[i] < 0) im.data[i] += 1; } hsv_to_rgb(im); constrain_image(im); } void exposure_image(image im, float sat) { rgb_to_hsv(im); scale_image_channel(im, 2, sat); hsv_to_rgb(im); constrain_image(im); } void distort_image(image im, float hue, float sat, float val) { if (im.c >= 3) { rgb_to_hsv(im); scale_image_channel(im, 1, sat); scale_image_channel(im, 2, val); int i; for(i = 0; i < im.w*im.h; ++i){ im.data[i] = im.data[i] + hue; if (im.data[i] > 1) im.data[i] -= 1; if (im.data[i] < 0) im.data[i] += 1; } hsv_to_rgb(im); } else { scale_image_channel(im, 0, val); } constrain_image(im); } void random_distort_image(image im, float hue, float saturation, float exposure) { float dhue = rand_uniform_strong(-hue, hue); float dsat = rand_scale(saturation); float dexp = rand_scale(exposure); distort_image(im, dhue, dsat, dexp); } void saturate_exposure_image(image im, float sat, float exposure) { rgb_to_hsv(im); scale_image_channel(im, 1, sat); scale_image_channel(im, 2, exposure); hsv_to_rgb(im); constrain_image(im); } float bilinear_interpolate(image im, float x, float y, int c) { int ix = (int) floorf(x); int iy = (int) floorf(y); float dx = x - ix; float dy = y - iy; float val = (1-dy) * (1-dx) * get_pixel_extend(im, ix, iy, c) + dy * (1-dx) * get_pixel_extend(im, ix, iy+1, c) + (1-dy) * dx * get_pixel_extend(im, ix+1, iy, c) + dy * dx * get_pixel_extend(im, ix+1, iy+1, c); return val; } image resize_image(image im, int w, int h) { image resized = make_image(w, h, im.c); image part = make_image(w, im.h, im.c); int r, c, k; float w_scale = (float)(im.w - 1) / (w - 1); float h_scale = (float)(im.h - 1) / (h - 1); for(k = 0; k < im.c; ++k){ for(r = 0; r < im.h; ++r){ for(c = 0; c < w; ++c){ float val = 0; if(c == w-1 || im.w == 1){ val = get_pixel(im, im.w-1, r, k); } else { float sx = c*w_scale; int ix = (int) sx; float dx = sx - ix; val = (1 - dx) * get_pixel(im, ix, r, k) + dx * get_pixel(im, ix+1, r, k); } set_pixel(part, c, r, k, val); } } } for(k = 0; k < im.c; ++k){ for(r = 0; r < h; ++r){ float sy = r*h_scale; int iy = (int) sy; float dy = sy - iy; for(c = 0; c < w; ++c){ float val = (1-dy) * get_pixel(part, c, iy, k); set_pixel(resized, c, r, k, val); } if(r == h-1 || im.h == 1) continue; for(c = 0; c < w; ++c){ float val = dy * get_pixel(part, c, iy+1, k); add_pixel(resized, c, r, k, val); } } } free_image(part); return resized; } void test_resize(char *filename) { image im = load_image(filename, 0,0, 3); float mag = mag_array(im.data, im.w*im.h*im.c); printf("L2 Norm: %fn", mag); image gray = grayscale_image(im); image c1 = copy_image(im); image c2 = copy_image(im); image c3 = copy_image(im); image c4 = copy_image(im); distort_image(c1, .1, 1.5, 1.5); distort_image(c2, -.1, .66666, .66666); distort_image(c3, .1, 1.5, .66666); distort_image(c4, .1, .66666, 1.5); show_image(im, "Original"); show_image(gray, "Gray"); show_image(c1, "C1"); show_image(c2, "C2"); show_image(c3, "C3"); show_image(c4, "C4"); #ifdef OPENCV while(1){ image aug = random_augment_image(im, 0, .75, 320, 448, 320); show_image(aug, "aug"); free_image(aug); float exposure = 1.15; float saturation = 1.15; float hue = .05; image c = copy_image(im); float dexp = rand_scale(exposure); float dsat = rand_scale(saturation); float dhue = rand_uniform(-hue, hue); distort_image(c, dhue, dsat, dexp); show_image(c, "rand"); printf("%f %f %fn", dhue, dsat, dexp); free_image(c); cvWaitKey(0); } #endif } image load_image_stb(char *filename, int channels) { int w, h, c; unsigned char *data = stbi_load(filename, &w, &h, &c, channels); if (!data) { char shrinked_filename[1024]; if (strlen(filename) >= 1024) sprintf(shrinked_filename, "name is too long"); else sprintf(shrinked_filename, "%s", filename); fprintf(stderr, "*image.c 1979*Cannot load image "%s"nSTB Reason: %sn", shrinked_filename, stbi_failure_reason()); FILE* fw = fopen("bad.list", "a"); fwrite(shrinked_filename, sizeof(char), strlen(shrinked_filename), fw); char *new_line = "n"; fwrite(new_line, sizeof(char), strlen(new_line), fw); fclose(fw); if (check_mistakes) getchar(); return make_image(10, 10, 3); //exit(EXIT_FAILURE); } if(channels) c = channels; int i,j,k; image im = make_image(w, h, c); for(k = 0; k < c; ++k){ for(j = 0; j < h; ++j){ for(i = 0; i < w; ++i){ int dst_index = i + w*j + w*h*k; int src_index = k + c*i + c*w*j; im.data[dst_index] = (float)data[src_index]/255.; } } } free(data); return im; } image load_image(char *filename, int w, int h, int c) { #ifdef OPENCV #ifndef CV_VERSION_EPOCH //image out = load_image_stb(filename, c); // OpenCV 3.x image out = load_image_cv(filename, c); #else image out = load_image_cv(filename, c); // OpenCV 2.4.x #endif #else image out = load_image_stb(filename, c); // without OpenCV #endif if((h && w) && (h != out.h || w != out.w)){ image resized = resize_image(out, w, h); free_image(out); out = resized; } return out; } image load_image_color(char *filename, int w, int h) { return load_image(filename, w, h, 3); } image get_image_layer(image m, int l) { image out = make_image(m.w, m.h, 1); int i; for(i = 0; i < m.h*m.w; ++i){ out.data[i] = m.data[i+l*m.h*m.w]; } return out; } void print_image(image m) { int i, j, k; for(i =0 ; i < m.c; ++i){ for(j =0 ; j < m.h; ++j){ for(k = 0; k < m.w; ++k){ printf("%.2lf, ", m.data[i*m.h*m.w + j*m.w + k]); if(k > 30) break; } printf("n"); if(j > 30) break; } printf("n"); } printf("n"); } image collapse_images_vert(image *ims, int n) { int color = 1; int border = 1; int h,w,c; w = ims[0].w; h = (ims[0].h + border) * n - border; c = ims[0].c; if(c != 3 || !color){ w = (w+border)*c - border; c = 1; } image filters = make_image(w, h, c); int i,j; for(i = 0; i < n; ++i){ int h_offset = i*(ims[0].h+border); image copy = copy_image(ims[i]); //normalize_image(copy); if(c == 3 && color){ embed_image(copy, filters, 0, h_offset); } else{ for(j = 0; j < copy.c; ++j){ int w_offset = j*(ims[0].w+border); image layer = get_image_layer(copy, j); embed_image(layer, filters, w_offset, h_offset); free_image(layer); } } free_image(copy); } return filters; } image collapse_images_horz(image *ims, int n) { int color = 1; int border = 1; int h,w,c; int size = ims[0].h; h = size; w = (ims[0].w + border) * n - border; c = ims[0].c; if(c != 3 || !color){ h = (h+border)*c - border; c = 1; } image filters = make_image(w, h, c); int i,j; for(i = 0; i < n; ++i){ int w_offset = i*(size+border); image copy = copy_image(ims[i]); //normalize_image(copy); if(c == 3 && color){ embed_image(copy, filters, w_offset, 0); } else{ for(j = 0; j < copy.c; ++j){ int h_offset = j*(size+border); image layer = get_image_layer(copy, j); embed_image(layer, filters, w_offset, h_offset); free_image(layer); } } free_image(copy); } return filters; } void show_image_normalized(image im, const char *name) { image c = copy_image(im); normalize_image(c); show_image(c, name); free_image(c); } void show_images(image *ims, int n, char *window) { image m = collapse_images_vert(ims, n); /* int w = 448; int h = ((float)m.h/m.w) * 448; if(h > 896){ h = 896; w = ((float)m.w/m.h) * 896; } image sized = resize_image(m, w, h); */ normalize_image(m); save_image(m, window); show_image(m, window); free_image(m); } void free_image(image m) { if(m.data){ free(m.data); } }
demo.c
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367#include "network.h" #include "detection_layer.h" #include "region_layer.h" #include "cost_layer.h" #include "utils.h" #include "parser.h" #include "box.h" #include "image.h" #include "demo.h" #ifdef WIN32 #include <time.h> #include <winsock.h> #include "gettimeofday.h" #else #include <sys/time.h> #endif #define FRAMES 3 #ifdef OPENCV #include "opencv2/highgui/highgui_c.h" #include "opencv2/imgproc/imgproc_c.h" #include "opencv2/core/version.hpp" #ifndef CV_VERSION_EPOCH #include "opencv2/videoio/videoio_c.h" #endif #include "http_stream.h" image get_image_from_stream(CvCapture *cap); static char **demo_names; static image **demo_alphabet; static int demo_classes; static float **probs; static box *boxes; static network net; static image in_s ; static image det_s; static CvCapture * cap; static int cpp_video_capture = 0; static float fps = 0; static float demo_thresh = 0; static int demo_ext_output = 0; static float *predictions[FRAMES]; static int demo_index = 0; static image images[FRAMES]; static IplImage* ipl_images[FRAMES]; static float *avg; void draw_detections_cv(IplImage* show_img, int num, float thresh, box *boxes, float **probs, char **names, image **alphabet, int classes); void draw_detections_cv_v3(IplImage* show_img, detection *dets, int num, float thresh, char **names, image **alphabet, int classes, int ext_output); void show_image_cv_ipl(IplImage *disp, const char *name); image get_image_from_stream_resize(CvCapture *cap, int w, int h, int c, IplImage** in_img, int cpp_video_capture, int dont_close); image get_image_from_stream_letterbox(CvCapture *cap, int w, int h, int c, IplImage** in_img, int cpp_video_capture, int dont_close); int get_stream_fps(CvCapture *cap, int cpp_video_capture); IplImage* in_img; IplImage* det_img; IplImage* show_img; static int flag_exit; static int letter_box = 0; void *fetch_in_thread(void *ptr) { //in = get_image_from_stream(cap); int dont_close_stream = 0; // set 1 if your IP-camera periodically turns off and turns on video-stream if(letter_box) in_s = get_image_from_stream_letterbox(cap, net.w, net.h, net.c, &in_img, cpp_video_capture, dont_close_stream); else in_s = get_image_from_stream_resize(cap, net.w, net.h, net.c, &in_img, cpp_video_capture, dont_close_stream); if(!in_s.data){ //error("Stream closed."); printf("Stream closed.n"); flag_exit = 1; return EXIT_FAILURE; } //in_s = resize_image(in, net.w, net.h); return 0; } void *detect_in_thread(void *ptr) { float nms = .45; // 0.4F layer l = net.layers[net.n-1]; float *X = det_s.data; float *prediction = network_predict(net, X); memcpy(predictions[demo_index], prediction, l.outputs*sizeof(float)); mean_arrays(predictions, FRAMES, l.outputs, avg); l.output = avg; free_image(det_s); int nboxes = 0; detection *dets = NULL; if (letter_box) dets = get_network_boxes(&net, in_img->width, in_img->height, demo_thresh, demo_thresh, 0, 1, &nboxes, 1); // letter box else dets = get_network_boxes(&net, det_s.w, det_s.h, demo_thresh, demo_thresh, 0, 1, &nboxes, 0); // resized //if (nms) do_nms_obj(dets, nboxes, l.classes, nms); // bad results if (nms) do_nms_sort(dets, nboxes, l.classes, nms); printf("33[2J"); printf("33[1;1H"); printf("nFPS:%.1fn",fps); printf("Objects:nn"); ipl_images[demo_index] = det_img; det_img = ipl_images[(demo_index + FRAMES / 2 + 1) % FRAMES]; demo_index = (demo_index + 1)%FRAMES; draw_detections_cv_v3(det_img, dets, nboxes, demo_thresh, demo_names, demo_alphabet, demo_classes, demo_ext_output); free_detections(dets, nboxes); return 0; } double get_wall_time() { struct timeval time; if (gettimeofday(&time,NULL)){ return 0; } return (double)time.tv_sec + (double)time.tv_usec * .000001; } void demo(char *cfgfile, char *weightfile, float thresh, float hier_thresh, int cam_index, const char *filename, char **names, int classes, int frame_skip, char *prefix, char *out_filename, int http_stream_port, int dont_show, int ext_output) { //skip = frame_skip; image **alphabet = load_alphabet(); int delay = frame_skip; demo_names = names; demo_alphabet = alphabet; demo_classes = classes; demo_thresh = thresh; demo_ext_output = ext_output; printf("Demon"); net = parse_network_cfg_custom(cfgfile, 1); // set batch=1 if(weightfile){ load_weights(&net, weightfile); } //set_batch_network(&net, 1); fuse_conv_batchnorm(net); calculate_binary_weights(net); srand(2222222); if(filename){ printf("video file: %sn", filename); //#ifdef CV_VERSION_EPOCH // OpenCV 2.x // cap = cvCaptureFromFile(filename); //#else // OpenCV 3.x cpp_video_capture = 1; cap = get_capture_video_stream(filename); //#endif }else{ printf("Webcam index: %dn", cam_index); //#ifdef CV_VERSION_EPOCH // OpenCV 2.x // cap = cvCaptureFromCAM(cam_index); //#else // OpenCV 3.x cpp_video_capture = 1; cap = get_capture_webcam(cam_index); //#endif } if (!cap) { #ifdef WIN32 printf("Check that you have copied file opencv_ffmpeg340_64.dll to the same directory where is darknet.exe n"); #endif error("Couldn't connect to webcam.n"); } layer l = net.layers[net.n-1]; int j; avg = (float *) calloc(l.outputs, sizeof(float)); for(j = 0; j < FRAMES; ++j) predictions[j] = (float *) calloc(l.outputs, sizeof(float)); for(j = 0; j < FRAMES; ++j) images[j] = make_image(1,1,3); //开辟存储空间 boxes = (box *)calloc(l.w*l.h*l.n, sizeof(box)); probs = (float **)calloc(l.w*l.h*l.n, sizeof(float *)); for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = (float *)calloc(l.classes, sizeof(float *)); if (l.classes != demo_classes) { printf("Parameters don't match: in cfg-file classes=%d, in data-file classes=%d n", l.classes, demo_classes); getchar(); exit(0); } flag_exit = 0; //多线程 pthread_t fetch_thread; pthread_t detect_thread; fetch_in_thread(0); det_img = in_img; det_s = in_s; fetch_in_thread(0); detect_in_thread(0); det_img = in_img; det_s = in_s; for(j = 0; j < FRAMES/2; ++j){ fetch_in_thread(0); detect_in_thread(0); det_img = in_img; det_s = in_s; } int count = 0; if(!prefix && !dont_show){ //不展示demo窗口 cvNamedWindow("Demo", CV_WINDOW_NORMAL); cvMoveWindow("Demo", 0, 0); cvResizeWindow("Demo", 1352, 1013); } CvVideoWriter* output_video_writer = NULL; // cv::VideoWriter output_video; 可添加检测视频的结果保存函数,不用添加,参数有路径就自动保存????? if (out_filename && !flag_exit) { CvSize size; size.width = det_img->width, size.height = det_img->height; int src_fps = 25; src_fps = get_stream_fps(cap, cpp_video_capture); //const char* output_name = "test_dnn_out.avi"; //output_video_writer = cvCreateVideoWriter(out_filename, CV_FOURCC('H', '2', '6', '4'), src_fps, size, 1); output_video_writer = cvCreateVideoWriter(out_filename, CV_FOURCC('D', 'I', 'V', 'X'), src_fps, size, 1); //output_video_writer = cvCreateVideoWriter(out_filename, CV_FOURCC('M', 'J', 'P', 'G'), src_fps, size, 1); //output_video_writer = cvCreateVideoWriter(out_filename, CV_FOURCC('M', 'P', '4', 'V'), src_fps, size, 1); //output_video_writer = cvCreateVideoWriter(out_filename, CV_FOURCC('M', 'P', '4', '2'), src_fps, size, 1); //output_video_writer = cvCreateVideoWriter(out_filename, CV_FOURCC('X', 'V', 'I', 'D'), src_fps, size, 1); //output_video_writer = cvCreateVideoWriter(out_filename, CV_FOURCC('W', 'M', 'V', '2'), src_fps, size, 1); } double before = get_wall_time(); while(1){ //进入循环,进入算法,展示结果 ++count; if(1){ if(pthread_create(&fetch_thread, 0, fetch_in_thread, 0)) error("Thread creation failed"); if(pthread_create(&detect_thread, 0, detect_in_thread, 0)) error("Thread creation failed"); if(!prefix){ //默认0进 if (!dont_show) { show_image_cv_ipl(show_img, "Demo"); //demo窗口,展示结果视频 //save_cut_image(); printf("/*************demo.c 252***************"); int c = cvWaitKey(1); if (c == 10) { //在demo窗口下按换行键Ctrl+Enter,暂停demo窗口的刷新,但是cmd后台仍然继续检测,再次按下有delay的显示(抽帧显示)第三次按下则还原实时显示。和在demo下长按enter一样的效果。demo下换行暂停后按enter会展示那一帧图片。到底是暂停还是delay展示????? if (frame_skip == 0) frame_skip = 60; else if (frame_skip == 4) frame_skip = 0; else if (frame_skip == 60) frame_skip = 4; else frame_skip = 0; } else if (c == 27 || c == 1048603) // ESC - exit (OpenCV 2.x / 3.x) { flag_exit = 1; } } }else{ //prefix有值就进。prefix为char真 类名?,dont_show为1,不展示demo,截图???默认为0不进 char buff[256]; sprintf(buff, "results//%s_%08d.jpg", prefix, count); cvSaveImage(buff, show_img, 0); //—prefix 走此,不展示demo窗口,但没有存图 printf("**********demo.c 269 save prefix************"); //save_image(disp, buff); } // if you run it with param -http_port 8090 then open URL in your web-browser: http://localhost:8090 if (http_stream_port > 0 && show_img) { //int port = 8090; int port = http_stream_port; int timeout = 200; int jpeg_quality = 30; // 1 - 100 send_mjpeg(show_img, port, timeout, jpeg_quality); //与正常摄像头无关 } // save video file 参数带有-out_filename就自动保存视频 if (output_video_writer && show_img) { cvWriteFrame(output_video_writer, show_img); printf("n cvWriteFrame n"); } cvReleaseImage(&show_img); pthread_join(fetch_thread, 0); pthread_join(detect_thread, 0); if (flag_exit == 1) break; if(delay == 0){ show_img = det_img; } det_img = in_img; det_s = in_s; }else { //应该进不来 fetch_in_thread(0); det_img = in_img; det_s = in_s; detect_in_thread(0); show_img = det_img; if (!dont_show) { show_image_cv_ipl(show_img, "Demo"); //展示视频的结果窗口,show_img为处理后的图片 cvSaveImage("***********demo 307****", show_img, 0); printf("/***************demo.c 307******************/"); cvWaitKey(1); } cvReleaseImage(&show_img); } --delay; if(delay < 0){ delay = frame_skip; double after = get_wall_time(); float curr = 1./(after - before); fps = curr; before = after; } } printf("*****demo.c 321 ****** input video stream closed. n"); if (output_video_writer) { cvReleaseVideoWriter(&output_video_writer); printf("output_video_writer closed. n"); } // free memory cvReleaseImage(&show_img); cvReleaseImage(&in_img); free_image(in_s); free(avg); for (j = 0; j < FRAMES; ++j) free(predictions[j]); for (j = 0; j < FRAMES; ++j) free_image(images[j]); for (j = 0; j < l.w*l.h*l.n; ++j) free(probs[j]); free(boxes); free(probs); free_ptrs(names, net.layers[net.n - 1].classes); int i; const int nsize = 8; for (j = 0; j < nsize; ++j) { for (i = 32; i < 127; ++i) { free_image(alphabet[j][i]); } free(alphabet[j]); } free(alphabet); free_network(net); } #else //若没有opencv void demo(char *cfgfile, char *weightfile, float thresh, float hier_thresh, int cam_index, const char *filename, char **names, int classes, int frame_skip, char *prefix, char *out_filename, int http_stream_port, int dont_show, int ext_output) { fprintf(stderr, "Demo needs OpenCV for webcam images.n"); } #endif
最后
以上就是激动小笼包最近收集整理的关于YOLO-V3 把玩 image.c demo.cdetector.cimage.cdemo.c的全部内容,更多相关YOLO-V3内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复