bioniclibcincludesyssocket.h
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265#ifndef _SYS_SOCKET_H_ #define _SYS_SOCKET_H_ #include <sys/cdefs.h> #include <sys/types.h> #include <linux/socket.h> #include <asm/fcntl.h> #include <asm/socket.h> #include <linux/sockios.h> #include <linux/uio.h> #include <linux/types.h> #include <linux/compiler.h> __BEGIN_DECLS #define sockaddr_storage __kernel_sockaddr_storage typedef unsigned short sa_family_t; struct timespec; #ifdef __mips__ #define SOCK_DGRAM 1 #define SOCK_STREAM 2 #define SOCK_RAW 3 #define SOCK_RDM 4 #define SOCK_SEQPACKET 5 #define SOCK_DCCP 6 #define SOCK_PACKET 10 #else #define SOCK_STREAM 1 #define SOCK_DGRAM 2 #define SOCK_RAW 3 #define SOCK_RDM 4 #define SOCK_SEQPACKET 5 #define SOCK_PACKET 10 #endif #define SOCK_CLOEXEC O_CLOEXEC #define SOCK_NONBLOCK O_NONBLOCK enum { SHUT_RD = 0, #define SHUT_RD SHUT_RD SHUT_WR, #define SHUT_WR SHUT_WR SHUT_RDWR #define SHUT_RDWR SHUT_RDWR }; struct sockaddr { sa_family_t sa_family; char sa_data[14]; }; struct linger { int l_onoff; int l_linger; }; struct msghdr { void* msg_name; socklen_t msg_namelen; struct iovec* msg_iov; size_t msg_iovlen; void* msg_control; size_t msg_controllen; int msg_flags; }; struct mmsghdr { struct msghdr msg_hdr; unsigned int msg_len; }; struct cmsghdr { size_t cmsg_len; int cmsg_level; int cmsg_type; }; #define CMSG_NXTHDR(mhdr, cmsg) __cmsg_nxthdr((mhdr), (cmsg)) #define CMSG_ALIGN(len) ( ((len)+sizeof(long)-1) & ~(sizeof(long)-1) ) #define CMSG_DATA(cmsg) ((void*)((char*)(cmsg) + CMSG_ALIGN(sizeof(struct cmsghdr)))) #define CMSG_SPACE(len) (CMSG_ALIGN(sizeof(struct cmsghdr)) + CMSG_ALIGN(len)) #define CMSG_LEN(len) (CMSG_ALIGN(sizeof(struct cmsghdr)) + (len)) #define CMSG_FIRSTHDR(msg) ((msg)->msg_controllen >= sizeof(struct cmsghdr) ? (struct cmsghdr*) (msg)->msg_control : (struct cmsghdr*) NULL) #define CMSG_OK(mhdr, cmsg) ((cmsg)->cmsg_len >= sizeof(struct cmsghdr) && (cmsg)->cmsg_len <= (unsigned long) ((mhdr)->msg_controllen - ((char*)(cmsg) - (char*)(mhdr)->msg_control))) struct cmsghdr* __cmsg_nxthdr(struct msghdr*, struct cmsghdr*); #define SCM_RIGHTS 0x01 #define SCM_CREDENTIALS 0x02 #define SCM_SECURITY 0x03 struct ucred { pid_t pid; uid_t uid; gid_t gid; }; #define AF_UNSPEC 0 #define AF_UNIX 1 #define AF_LOCAL 1 #define AF_INET 2 #define AF_AX25 3 #define AF_IPX 4 #define AF_APPLETALK 5 #define AF_NETROM 6 #define AF_BRIDGE 7 #define AF_ATMPVC 8 #define AF_X25 9 #define AF_INET6 10 #define AF_ROSE 11 #define AF_DECnet 12 #define AF_NETBEUI 13 #define AF_SECURITY 14 #define AF_KEY 15 #define AF_NETLINK 16 #define AF_ROUTE AF_NETLINK #define AF_PACKET 17 #define AF_ASH 18 #define AF_ECONET 19 #define AF_ATMSVC 20 #define AF_RDS 21 #define AF_SNA 22 #define AF_IRDA 23 #define AF_PPPOX 24 #define AF_WANPIPE 25 #define AF_LLC 26 #define AF_CAN 29 #define AF_TIPC 30 #define AF_BLUETOOTH 31 #define AF_IUCV 32 #define AF_RXRPC 33 #define AF_ISDN 34 #define AF_PHONET 35 #define AF_IEEE802154 36 #define AF_CAIF 37 #define AF_ALG 38 #define AF_MAX 39 #define PF_UNSPEC AF_UNSPEC #define PF_UNIX AF_UNIX #define PF_LOCAL AF_LOCAL #define PF_INET AF_INET #define PF_AX25 AF_AX25 #define PF_IPX AF_IPX #define PF_APPLETALK AF_APPLETALK #define PF_NETROM AF_NETROM #define PF_BRIDGE AF_BRIDGE #define PF_ATMPVC AF_ATMPVC #define PF_X25 AF_X25 #define PF_INET6 AF_INET6 #define PF_ROSE AF_ROSE #define PF_DECnet AF_DECnet #define PF_NETBEUI AF_NETBEUI #define PF_SECURITY AF_SECURITY #define PF_KEY AF_KEY #define PF_NETLINK AF_NETLINK #define PF_ROUTE AF_ROUTE #define PF_PACKET AF_PACKET #define PF_ASH AF_ASH #define PF_ECONET AF_ECONET #define PF_ATMSVC AF_ATMSVC #define PF_RDS AF_RDS #define PF_SNA AF_SNA #define PF_IRDA AF_IRDA #define PF_PPPOX AF_PPPOX #define PF_WANPIPE AF_WANPIPE #define PF_LLC AF_LLC #define PF_CAN AF_CAN #define PF_TIPC AF_TIPC #define PF_BLUETOOTH AF_BLUETOOTH #define PF_IUCV AF_IUCV #define PF_RXRPC AF_RXRPC #define PF_ISDN AF_ISDN #define PF_PHONET AF_PHONET #define PF_IEEE802154 AF_IEEE802154 #define PF_CAIF AF_CAIF #define PF_ALG AF_ALG #define PF_MAX AF_MAX #define SOMAXCONN 128 #define MSG_OOB 1 #define MSG_PEEK 2 #define MSG_DONTROUTE 4 #define MSG_TRYHARD 4 #define MSG_CTRUNC 8 #define MSG_PROBE 0x10 #define MSG_TRUNC 0x20 #define MSG_DONTWAIT 0x40 #define MSG_EOR 0x80 #define MSG_WAITALL 0x100 #define MSG_FIN 0x200 #define MSG_SYN 0x400 #define MSG_CONFIRM 0x800 #define MSG_RST 0x1000 #define MSG_ERRQUEUE 0x2000 #define MSG_NOSIGNAL 0x4000 #define MSG_MORE 0x8000 #define MSG_WAITFORONE 0x10000 #define MSG_FASTOPEN 0x20000000 #define MSG_CMSG_CLOEXEC 0x40000000 #define MSG_EOF MSG_FIN #define MSG_CMSG_COMPAT 0 #define SOL_IP 0 #define SOL_TCP 6 #define SOL_UDP 17 #define SOL_IPV6 41 #define SOL_ICMPV6 58 #define SOL_SCTP 132 #define SOL_RAW 255 #define SOL_IPX 256 #define SOL_AX25 257 #define SOL_ATALK 258 #define SOL_NETROM 259 #define SOL_ROSE 260 #define SOL_DECNET 261 #define SOL_X25 262 #define SOL_PACKET 263 #define SOL_ATM 264 #define SOL_AAL 265 #define SOL_IRDA 266 #define SOL_NETBEUI 267 #define SOL_LLC 268 #define SOL_DCCP 269 #define SOL_NETLINK 270 #define SOL_TIPC 271 #define IPX_TYPE 1 #ifdef __i386__ # define __socketcall extern __attribute__((__cdecl__)) #else # define __socketcall extern #endif __socketcall int accept(int, struct sockaddr*, socklen_t*); __socketcall int accept4(int, struct sockaddr*, socklen_t*, int); __socketcall int bind(int, const struct sockaddr*, int); __socketcall int connect(int, const struct sockaddr*, socklen_t); __socketcall int getpeername(int, struct sockaddr*, socklen_t*); __socketcall int getsockname(int, struct sockaddr*, socklen_t*); __socketcall int getsockopt(int, int, int, void*, socklen_t*); __socketcall int listen(int, int); __socketcall int recvmmsg(int, struct mmsghdr*, unsigned int, int, const struct timespec*); __socketcall int recvmsg(int, struct msghdr*, int); __socketcall int sendmmsg(int, const struct mmsghdr*, unsigned int, int); __socketcall int sendmsg(int, const struct msghdr*, int); __socketcall int setsockopt(int, int, int, const void*, socklen_t); __socketcall int shutdown(int, int); __socketcall int socket(int, int, int); __socketcall int socketpair(int, int, int, int*); extern ssize_t send(int, const void*, size_t, int); extern ssize_t recv(int, void*, size_t, int); __socketcall ssize_t sendto(int, const void*, size_t, int, const struct sockaddr*, socklen_t); __socketcall ssize_t recvfrom(int, void*, size_t, int, const struct sockaddr*, socklen_t*); __errordecl(__recvfrom_error, "recvfrom called with size bigger than buffer"); extern ssize_t __recvfrom_chk(int, void*, size_t, size_t, int, const struct sockaddr*, socklen_t*); extern ssize_t __recvfrom_real(int, void*, size_t, int, const struct sockaddr*, socklen_t*) __RENAME(recvfrom); #if defined(__BIONIC_FORTIFY) __BIONIC_FORTIFY_INLINE ssize_t recvfrom(int fd, void* buf, size_t len, int flags, const struct sockaddr* src_addr, socklen_t* addr_len) { size_t bos = __bos0(buf); #if !defined(__clang__) if (bos == __BIONIC_FORTIFY_UNKNOWN_SIZE) { return __recvfrom_real(fd, buf, len, flags, src_addr, addr_len); } if (__builtin_constant_p(len) && (len <= bos)) { return __recvfrom_real(fd, buf, len, flags, src_addr, addr_len); } if (__builtin_constant_p(len) && (len > bos)) { __recvfrom_error(); } #endif return __recvfrom_chk(fd, buf, len, bos, flags, src_addr, addr_len); } __BIONIC_FORTIFY_INLINE ssize_t recv(int socket, void* buf, size_t len, int flags) { return recvfrom(socket, buf, len, flags, NULL, 0); } #endif /* __BIONIC_FORTIFY */ #undef __socketcall __END_DECLS #endif /* _SYS_SOCKET_H */
bioniclibcbionicsocket.cpp
复制代码
1
2
3
4
5#include "private/NetdClientDispatch.h" #include <sys/socket.h> int socket(int domain, int type, int protocol) { return __netdClientDispatch.socket(domain, type, protocol); }
bioniclibcbionicsend.cpp
复制代码
1
2
3
4#include <sys/socket.h> ssize_t send(int socket, const void* buf, size_t len, int flags) { return sendto(socket, buf, len, flags, NULL, 0);//注释1 }
bioniclibcbionicrecv.cpp
复制代码
1
2
3
4
5#undef _FORTIFY_SOURCE #include <sys/socket.h> ssize_t recv(int socket, void *buf, size_t len, int flags) { return recvfrom(socket, buf, len, flags, NULL, 0); }
bioniclibcbionicconnect.cpp
复制代码
1
2
3
4
5#include "private/NetdClientDispatch.h" #include <sys/socket.h> int connect(int sockfd, const sockaddr* addr, socklen_t addrlen) { return __netdClientDispatch.connect(sockfd, addr, addrlen); }
bioniclibcbionicbindresvport.c
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38#include <errno.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <string.h> #include <unistd.h> #define START_PORT 600 #define END_PORT IPPORT_RESERVED #define NUM_PORTS (END_PORT - START_PORT) int bindresvport(int sd, struct sockaddr_in *sin) { static short port; struct sockaddr_in sin0; int nn, ret; if (sin == NULL) { sin = &sin0; memset( sin, 0, sizeof *sin ); sin->sin_family = AF_INET; } else if (sin->sin_family != AF_INET) { errno = EPFNOSUPPORT; return -1; } if (port == 0) { port = START_PORT + (getpid() % NUM_PORTS); } for (nn = NUM_PORTS; nn > 0; nn--, port++) { if (port == END_PORT) port = START_PORT; sin->sin_port = htons(port); do { ret = bind(sd, (struct sockaddr*)sin, sizeof(*sin)); } while (ret < 0 && errno == EINTR); if (!ret) break; } return ret; }
bioniclibcbionicaccept.cpp
复制代码
1
2
3
4#include <sys/socket.h> int accept(int sockfd, sockaddr* addr, socklen_t* addrlen) { return accept4(sockfd, addr, addrlen, 0); }
bioniclibcbionicaccept4.cpp
复制代码
1
2
3
4
5#include "private/NetdClientDispatch.h" #include <sys/socket.h> int accept4(int sockfd, sockaddr* addr, socklen_t* addrlen, int flags) { return __netdClientDispatch.accept4(sockfd, addr, addrlen, flags); }
注释1:sendto方法
Externalchromium_orgnative_client_sdksrclibrariesnacl_iosyscallssocketsendto.c
复制代码
1
2
3
4
5
6
7
8
9#include "nacl_io/kernel_intercept.h" #include "nacl_io/kernel_wrap.h" #if defined(PROVIDES_SOCKET_API) && !defined(__GLIBC__) ssize_t sendto(int fd, const void* buf, size_t len, int flags, const struct sockaddr* addr, socklen_t addrlen) { return ki_sendto(fd, buf, len, flags, addr, addrlen); } #endif
系统调用
Externalchromium_orgnative_client_sdksrclibrariesnacl_iokernel_intercept.cc 483行
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516#include "nacl_io/kernel_intercept.h" #include <assert.h> #include <errno.h> #include <string.h> #include "nacl_io/kernel_proxy.h" #include "nacl_io/kernel_wrap.h" #include "nacl_io/kernel_wrap_real.h" #include "nacl_io/log.h" #include "nacl_io/osmman.h" #include "nacl_io/ossocket.h" #include "nacl_io/ostime.h" #include "nacl_io/pepper_interface.h" #include "nacl_io/real_pepper_interface.h" using namespace nacl_io; #define ON_NOSYS_RETURN(x) if (!ki_is_initialized()) { errno = ENOSYS; return x; } struct KernelInterceptState { KernelProxy* kp; PepperInterface* ppapi; bool kp_owned; }; static KernelInterceptState s_state; // The the test code we want to be able to save the previous kernel // proxy when intialising and restore it on uninit. static KernelInterceptState s_saved_state; int ki_push_state_for_testing() { assert(s_saved_state.kp == NULL); if (s_saved_state.kp != NULL) return 1; s_saved_state = s_state; s_state.kp = NULL; s_state.ppapi = NULL; s_state.kp_owned = false; return 0; } static void ki_pop_state() { // Swap out the KernelProxy. This will normally reset the // proxy to NULL, aside from in test code that has called // ki_push_state_for_testing(). s_state = s_saved_state; s_saved_state.kp = NULL; s_saved_state.ppapi = NULL; s_saved_state.kp_owned = false; } int ki_pop_state_for_testing() { ki_pop_state(); return 0; } int ki_init(void* kp) { LOG_TRACE("ki_init: %p", kp); return ki_init_ppapi(kp, 0, NULL); } int ki_init_ppapi(void* kp, PP_Instance instance, PPB_GetInterface get_browser_interface) { assert(!s_state.kp); if (s_state.kp != NULL) return 1; PepperInterface* ppapi = NULL; if (instance && get_browser_interface) { ppapi = new RealPepperInterface(instance, get_browser_interface); s_state.ppapi = ppapi; } int rtn = ki_init_interface(kp, ppapi); return rtn; } int ki_init_interface(void* kp, void* pepper_interface) { LOG_TRACE("ki_init_interface: %p %p", kp, pepper_interface); assert(!s_state.kp); if (s_state.kp != NULL) return 1; PepperInterface* ppapi = static_cast<PepperInterface*>(pepper_interface); kernel_wrap_init(); if (kp == NULL) { s_state.kp = new KernelProxy(); s_state.kp_owned = true; } else { s_state.kp = static_cast<KernelProxy*>(kp); s_state.kp_owned = false; } if (s_state.kp->Init(ppapi) != 0) return 1; return 0; } int ki_is_initialized() { return s_state.kp != NULL; } int ki_uninit() { LOG_TRACE("ki_uninit"); assert(s_state.kp); if (s_state.kp == NULL) return 1; if (s_saved_state.kp == NULL) kernel_wrap_uninit(); // If we are going to delete the KernelProxy don't do it // until we've swapped it out. KernelInterceptState state_to_delete = s_state; ki_pop_state(); if (state_to_delete.kp_owned) delete state_to_delete.kp; delete state_to_delete.ppapi; return 0; } nacl_io::KernelProxy* ki_get_proxy() { return s_state.kp; } int ki_chdir(const char* path) { ON_NOSYS_RETURN(-1); return s_state.kp->chdir(path); } void ki_exit(int status) { if (ki_is_initialized()) s_state.kp->exit(status); _real_exit(status); } char* ki_getcwd(char* buf, size_t size) { // gtest uses getcwd in a static initializer and expects it to always // succeed. If we haven't initialized kernel-intercept yet, then try // the IRT's getcwd, and fall back to just returning ".". if (!ki_is_initialized()) { int rtn = _real_getcwd(buf, size); if (rtn != 0) { if (rtn == ENOSYS) { buf[0] = '.'; buf[1] = 0; } else { errno = rtn; return NULL; } } return buf; } return s_state.kp->getcwd(buf, size); } char* ki_getwd(char* buf) { ON_NOSYS_RETURN(NULL); return s_state.kp->getwd(buf); } int ki_dup(int oldfd) { ON_NOSYS_RETURN(-1); return s_state.kp->dup(oldfd); } int ki_dup2(int oldfd, int newfd) { ON_NOSYS_RETURN(-1); return s_state.kp->dup2(oldfd, newfd); } int ki_chmod(const char* path, mode_t mode) { ON_NOSYS_RETURN(-1); return s_state.kp->chmod(path, mode); } int ki_fchdir(int fd) { ON_NOSYS_RETURN(-1); return s_state.kp->fchdir(fd); } int ki_fchmod(int fd, mode_t mode) { ON_NOSYS_RETURN(-1); return s_state.kp->fchmod(fd, mode); } int ki_stat(const char* path, struct stat* buf) { ON_NOSYS_RETURN(-1); return s_state.kp->stat(path, buf); } int ki_mkdir(const char* path, mode_t mode) { ON_NOSYS_RETURN(-1); return s_state.kp->mkdir(path, mode); } int ki_rmdir(const char* path) { ON_NOSYS_RETURN(-1); return s_state.kp->rmdir(path); } int ki_mount(const char* source, const char* target, const char* filesystemtype, unsigned long mountflags, const void* data) { ON_NOSYS_RETURN(-1); return s_state.kp->mount(source, target, filesystemtype, mountflags, data); } int ki_umount(const char* path) { ON_NOSYS_RETURN(-1); return s_state.kp->umount(path); } int ki_open(const char* path, int oflag, mode_t mode) { ON_NOSYS_RETURN(-1); return s_state.kp->open(path, oflag, mode); } int ki_pipe(int pipefds[2]) { ON_NOSYS_RETURN(-1); return s_state.kp->pipe(pipefds); } ssize_t ki_read(int fd, void* buf, size_t nbyte) { ON_NOSYS_RETURN(-1); return s_state.kp->read(fd, buf, nbyte); } ssize_t ki_write(int fd, const void* buf, size_t nbyte) { ON_NOSYS_RETURN(-1); return s_state.kp->write(fd, buf, nbyte); } int ki_fstat(int fd, struct stat* buf) { ON_NOSYS_RETURN(-1); return s_state.kp->fstat(fd, buf); } int ki_getdents(int fd, void* buf, unsigned int count) { ON_NOSYS_RETURN(-1); return s_state.kp->getdents(fd, buf, count); } int ki_ftruncate(int fd, off_t length) { ON_NOSYS_RETURN(-1); return s_state.kp->ftruncate(fd, length); } int ki_fsync(int fd) { ON_NOSYS_RETURN(-1); return s_state.kp->fsync(fd); } int ki_fdatasync(int fd) { ON_NOSYS_RETURN(-1); return s_state.kp->fdatasync(fd); } int ki_isatty(int fd) { ON_NOSYS_RETURN(0); return s_state.kp->isatty(fd); } int ki_close(int fd) { ON_NOSYS_RETURN(-1); return s_state.kp->close(fd); } off_t ki_lseek(int fd, off_t offset, int whence) { ON_NOSYS_RETURN(-1); return s_state.kp->lseek(fd, offset, whence); } int ki_remove(const char* path) { ON_NOSYS_RETURN(-1); return s_state.kp->remove(path); } int ki_unlink(const char* path) { ON_NOSYS_RETURN(-1); return s_state.kp->unlink(path); } int ki_truncate(const char* path, off_t length) { ON_NOSYS_RETURN(-1); return s_state.kp->truncate(path, length); } int ki_lstat(const char* path, struct stat* buf) { ON_NOSYS_RETURN(-1); return s_state.kp->lstat(path, buf); } int ki_link(const char* oldpath, const char* newpath) { ON_NOSYS_RETURN(-1); return s_state.kp->link(oldpath, newpath); } int ki_rename(const char* path, const char* newpath) { ON_NOSYS_RETURN(-1); return s_state.kp->rename(path, newpath); } int ki_symlink(const char* oldpath, const char* newpath) { ON_NOSYS_RETURN(-1); return s_state.kp->symlink(oldpath, newpath); } int ki_access(const char* path, int amode) { ON_NOSYS_RETURN(-1); return s_state.kp->access(path, amode); } int ki_readlink(const char* path, char* buf, size_t count) { ON_NOSYS_RETURN(-1); return s_state.kp->readlink(path, buf, count); } int ki_utimes(const char* path, const struct timeval times[2]) { ON_NOSYS_RETURN(-1); // Implement in terms of utimens. struct timespec ts[2]; ts[0].tv_sec = times[0].tv_sec; ts[0].tv_nsec = times[0].tv_usec * 1000; ts[1].tv_sec = times[1].tv_sec; ts[1].tv_nsec = times[1].tv_usec * 1000; return s_state.kp->utimens(path, ts); } int ki_futimes(int fd, const struct timeval times[2]) { ON_NOSYS_RETURN(-1); // Implement in terms of futimens. struct timespec ts[2]; ts[0].tv_sec = times[0].tv_sec; ts[0].tv_nsec = times[0].tv_usec * 1000; ts[1].tv_sec = times[1].tv_sec; ts[1].tv_nsec = times[1].tv_usec * 1000; return s_state.kp->futimens(fd, ts); } void* ki_mmap(void* addr, size_t length, int prot, int flags, int fd, off_t offset) { ON_NOSYS_RETURN(MAP_FAILED); return s_state.kp->mmap(addr, length, prot, flags, fd, offset); } int ki_munmap(void* addr, size_t length) { ON_NOSYS_RETURN(-1); return s_state.kp->munmap(addr, length); } int ki_open_resource(const char* file) { ON_NOSYS_RETURN(-1); return s_state.kp->open_resource(file); } int ki_fcntl(int d, int request, va_list args) { ON_NOSYS_RETURN(-1); return s_state.kp->fcntl(d, request, args); } int ki_ioctl(int d, int request, va_list args) { ON_NOSYS_RETURN(-1); return s_state.kp->ioctl(d, request, args); } int ki_chown(const char* path, uid_t owner, gid_t group) { ON_NOSYS_RETURN(-1); return s_state.kp->chown(path, owner, group); } int ki_fchown(int fd, uid_t owner, gid_t group) { ON_NOSYS_RETURN(-1); return s_state.kp->fchown(fd, owner, group); } int ki_lchown(const char* path, uid_t owner, gid_t group) { ON_NOSYS_RETURN(-1); return s_state.kp->lchown(path, owner, group); } int ki_utime(const char* filename, const struct utimbuf* times) { ON_NOSYS_RETURN(-1); // Implement in terms of utimens. struct timespec ts[2]; ts[0].tv_sec = times->actime; ts[0].tv_nsec = 0; ts[1].tv_sec = times->modtime; ts[1].tv_nsec = 0; return s_state.kp->utimens(filename, ts); } int ki_futimens(int fd, const struct timespec times[2]) { ON_NOSYS_RETURN(-1); return s_state.kp->futimens(fd, times); } int ki_poll(struct pollfd* fds, nfds_t nfds, int timeout) { return s_state.kp->poll(fds, nfds, timeout); } int ki_select(int nfds, fd_set* readfds, fd_set* writefds, fd_set* exceptfds, struct timeval* timeout) { return s_state.kp->select(nfds, readfds, writefds, exceptfds, timeout); } int ki_tcflush(int fd, int queue_selector) { ON_NOSYS_RETURN(-1); return s_state.kp->tcflush(fd, queue_selector); } int ki_tcgetattr(int fd, struct termios* termios_p) { ON_NOSYS_RETURN(-1); return s_state.kp->tcgetattr(fd, termios_p); } int ki_tcsetattr(int fd, int optional_actions, const struct termios* termios_p) { ON_NOSYS_RETURN(-1); return s_state.kp->tcsetattr(fd, optional_actions, termios_p); } int ki_kill(pid_t pid, int sig) { ON_NOSYS_RETURN(-1); return s_state.kp->kill(pid, sig); } int ki_killpg(pid_t pid, int sig) { errno = ENOSYS; return -1; } int ki_sigaction(int signum, const struct sigaction* action, struct sigaction* oaction) { ON_NOSYS_RETURN(-1); return s_state.kp->sigaction(signum, action, oaction); } int ki_sigpause(int sigmask) { errno = ENOSYS; return -1; } int ki_sigpending(sigset_t* set) { errno = ENOSYS; return -1; } int ki_sigsuspend(const sigset_t* set) { errno = ENOSYS; return -1; } sighandler_t ki_signal(int signum, sighandler_t handler) { return ki_sigset(signum, handler); } sighandler_t ki_sigset(int signum, sighandler_t handler) { ON_NOSYS_RETURN(SIG_ERR); // Implement sigset(2) in terms of sigaction(2). struct sigaction action; struct sigaction oaction; memset(&action, 0, sizeof(action)); memset(&oaction, 0, sizeof(oaction)); action.sa_handler = handler; int rtn = s_state.kp->sigaction(signum, &action, &oaction); if (rtn) return SIG_ERR; return oaction.sa_handler; } #ifdef PROVIDES_SOCKET_API // Socket Functions int ki_accept(int fd, struct sockaddr* addr, socklen_t* len) { ON_NOSYS_RETURN(-1); return s_state.kp->accept(fd, addr, len); } int ki_bind(int fd, const struct sockaddr* addr, socklen_t len) { ON_NOSYS_RETURN(-1); return s_state.kp->bind(fd, addr, len); } int ki_connect(int fd, const struct sockaddr* addr, socklen_t len) { ON_NOSYS_RETURN(-1); return s_state.kp->connect(fd, addr, len); } struct hostent* ki_gethostbyname(const char* name) { ON_NOSYS_RETURN(NULL); return s_state.kp->gethostbyname(name); } int ki_getnameinfo(const struct sockaddr *sa, socklen_t salen, char *host, size_t hostlen, char *serv, size_t servlen, unsigned int flags) { ON_NOSYS_RETURN(EAI_SYSTEM); return s_state.kp->getnameinfo(sa, salen, host, hostlen, serv, servlen, flags); } int ki_getaddrinfo(const char* node, const char* service, const struct addrinfo* hints, struct addrinfo** res) { ON_NOSYS_RETURN(EAI_SYSTEM); return s_state.kp->getaddrinfo(node, service, hints, res); } void ki_freeaddrinfo(struct addrinfo* res) { s_state.kp->freeaddrinfo(res); } int ki_getpeername(int fd, struct sockaddr* addr, socklen_t* len) { ON_NOSYS_RETURN(-1); return s_state.kp->getpeername(fd, addr, len); } int ki_getsockname(int fd, struct sockaddr* addr, socklen_t* len) { ON_NOSYS_RETURN(-1); return s_state.kp->getsockname(fd, addr, len); } int ki_getsockopt(int fd, int lvl, int optname, void* optval, socklen_t* len) { ON_NOSYS_RETURN(-1); return s_state.kp->getsockopt(fd, lvl, optname, optval, len); } int ki_listen(int fd, int backlog) { ON_NOSYS_RETURN(-1); return s_state.kp->listen(fd, backlog); } ssize_t ki_recv(int fd, void* buf, size_t len, int flags) { ON_NOSYS_RETURN(-1); return s_state.kp->recv(fd, buf, len, flags); } ssize_t ki_recvfrom(int fd, void* buf, size_t len, int flags, struct sockaddr* addr, socklen_t* addrlen) { ON_NOSYS_RETURN(-1); return s_state.kp->recvfrom(fd, buf, len, flags, addr, addrlen); } ssize_t ki_recvmsg(int fd, struct msghdr* msg, int flags) { ON_NOSYS_RETURN(-1); return s_state.kp->recvmsg(fd, msg, flags); } ssize_t ki_send(int fd, const void* buf, size_t len, int flags) { ON_NOSYS_RETURN(-1); return s_state.kp->send(fd, buf, len, flags); } ssize_t ki_sendto(int fd, const void* buf, size_t len, int flags, const struct sockaddr* addr, socklen_t addrlen) { ON_NOSYS_RETURN(-1); return s_state.kp->sendto(fd, buf, len, flags, addr, addrlen); } ssize_t ki_sendmsg(int fd, const struct msghdr* msg, int flags) { ON_NOSYS_RETURN(-1); return s_state.kp->sendmsg(fd, msg, flags); } int ki_setsockopt(int fd, int lvl, int optname, const void* optval, socklen_t len) { ON_NOSYS_RETURN(-1); return s_state.kp->setsockopt(fd, lvl, optname, optval, len); } int ki_shutdown(int fd, int how) { ON_NOSYS_RETURN(-1); return s_state.kp->shutdown(fd, how); } int ki_socket(int domain, int type, int protocol) { ON_NOSYS_RETURN(-1); return s_state.kp->socket(domain, type, protocol); } int ki_socketpair(int domain, int type, int protocol, int* sv) { ON_NOSYS_RETURN(-1); return s_state.kp->socketpair(domain, type, protocol, sv); } #endif // PROVIDES_SOCKET_API
最后
以上就是兴奋刺猬最近收集整理的关于socket的实现,安卓系统AOSP源码的全部内容,更多相关socket内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复