【ABCNet训练自己的模型(二)】
【ABCNet训练自己的模型(三)】
数据标注
标注工具-labelme
下载链接
https://github.com/wkentaro/labelme
安装
windows
复制代码
1
2
3
4conda create –n labelme python=3.6 conda activate labelme pip install labelme
标注工具windows_label_tool
可以直接转成abcnet训练的数据
数据集制作
labelme格式转windows_label_tool
格式如下
由8个点和标签组成,8个点是上下4个起始和结束点和4个控制点
复制代码
1
2504.96,173.19,597.18,72.88,774.98,117.75,831.84,232.33,808.18,264.59,753.16,165.61,607.18,147.01,525.39,223.73||||x009404027002
代码如下:
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280# coding=utf-8 # labelme 标注的json文件标注转abcnet 的标注,如果直接使用windowlabel工具标注则可省去此步骤 import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg from scipy import interpolate from scipy.special import comb as n_over_k import glob, os import cv2 from skimage import data, color from skimage.transform import rescale, resize, downscale_local_mean import json import matplotlib.pyplot as plt import math import numpy as np import random import torch from torch import nn from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn import metrics from sklearn.metrics import mean_squared_error, r2_score from shapely.geometry import * import time import math import re class Bezier(nn.Module): def __init__(self, ps, ctps): """ ps: numpy array of points """ super(Bezier, self).__init__() self.x1 = nn.Parameter(torch.as_tensor(ctps[0], dtype=torch.float64)) self.x2 = nn.Parameter(torch.as_tensor(ctps[2], dtype=torch.float64)) self.y1 = nn.Parameter(torch.as_tensor(ctps[1], dtype=torch.float64)) self.y2 = nn.Parameter(torch.as_tensor(ctps[3], dtype=torch.float64)) self.x0 = ps[0, 0] self.x3 = ps[-1, 0] self.y0 = ps[0, 1] self.y3 = ps[-1, 1] self.inner_ps = torch.as_tensor(ps[1:-1, :], dtype=torch.float64) self.t = torch.as_tensor(np.linspace(0, 1, 81)) def forward(self): x0, x1, x2, x3, y0, y1, y2, y3 = self.control_points() t = self.t bezier_x = (1 - t) * ((1 - t) * ((1 - t) * x0 + t * x1) + t * ((1 - t) * x1 + t * x2)) + t * ( (1 - t) * ((1 - t) * x1 + t * x2) + t * ((1 - t) * x2 + t * x3)) bezier_y = (1 - t) * ((1 - t) * ((1 - t) * y0 + t * y1) + t * ((1 - t) * y1 + t * y2)) + t * ( (1 - t) * ((1 - t) * y1 + t * y2) + t * ((1 - t) * y2 + t * y3)) bezier = torch.stack((bezier_x, bezier_y), dim=1) diffs = bezier.unsqueeze(0) - self.inner_ps.unsqueeze(1) sdiffs = diffs ** 2 dists = sdiffs.sum(dim=2).sqrt() min_dists, min_inds = dists.min(dim=1) return min_dists.sum() def control_points(self): return self.x0, self.x1, self.x2, self.x3, self.y0, self.y1, self.y2, self.y3 def control_points_f(self): return self.x0, self.x1.item(), self.x2.item(), self.x3, self.y0, self.y1.item(), self.y2.item(), self.y3 def train(x, y, ctps, lr): x, y = np.array(x), np.array(y) ps = np.vstack((x, y)).transpose() bezier = Bezier(ps, ctps) return bezier.control_points_f() def draw(ps, control_points, t): x = ps[:, 0] y = ps[:, 1] x0, x1, x2, x3, y0, y1, y2, y3 = control_points fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x, y, color='m', linestyle='', marker='.') bezier_x = (1 - t) * ((1 - t) * ((1 - t) * x0 + t * x1) + t * ((1 - t) * x1 + t * x2)) + t * ( (1 - t) * ((1 - t) * x1 + t * x2) + t * ((1 - t) * x2 + t * x3)) bezier_y = (1 - t) * ((1 - t) * ((1 - t) * y0 + t * y1) + t * ((1 - t) * y1 + t * y2)) + t * ( (1 - t) * ((1 - t) * y1 + t * y2) + t * ((1 - t) * y2 + t * y3)) # plt.plot(bezier_x, bezier_y, 'g-') # plt.draw() # plt.pause(1) # <------- # # raw_input("<Hit Enter To Close>") # plt.close(fig) Mtk = lambda n, t, k: t ** k * (1 - t) ** (n - k) * n_over_k(n, k) BezierCoeff = lambda ts: [[Mtk(3, t, k) for k in range(4)] for t in ts] def bezier_fit(x, y): dy = y[1:] - y[:-1] dx = x[1:] - x[:-1] dt = (dx ** 2 + dy ** 2) ** 0.5 t = dt / dt.sum() t = np.hstack(([0], t)) t = t.cumsum() data = np.column_stack((x, y)) Pseudoinverse = np.linalg.pinv(BezierCoeff(t)) # (9,4) -> (4,9) control_points = Pseudoinverse.dot(data) # (4,9)*(9,2) -> (4,2) medi_ctp = control_points[1:-1, :].flatten().tolist() return medi_ctp def bezier_fitv2(x, y): xc01 = (2 * x[0] + x[-1]) / 3.0 yc01 = (2 * y[0] + y[-1]) / 3.0 xc02 = (x[0] + 2 * x[-1]) / 3.0 yc02 = (y[0] + 2 * y[-1]) / 3.0 control_points = [xc01, yc01, xc02, yc02] return control_points def is_close_to_line(xs, ys, thres): regression_model = LinearRegression() # Fit the data(train the model) regression_model.fit(xs.reshape(-1, 1), ys.reshape(-1, 1)) # Predict y_predicted = regression_model.predict(xs.reshape(-1, 1)) # model evaluation rmse = mean_squared_error(ys.reshape(-1, 1) ** 2, y_predicted ** 2) rmse = rmse / (ys.reshape(-1, 1) ** 2 - y_predicted ** 2).max() ** 2 if rmse > thres: return 0.0 else: return 2.0 def is_close_to_linev2(xs, ys, size, thres=0.05): pts = [] nor_pixel = int(size ** 0.5) for i in range(len(xs)): pts.append(Point([xs[i], ys[i]])) import itertools # iterate by pairs of points slopes = [(second.y - first.y) / (second.x - first.x) if not (second.x - first.x) == 0.0 else math.inf * np.sign( (second.y - first.y)) for first, second in zip(pts, pts[1:])] st_slope = (ys[-1] - ys[0]) / (xs[-1] - xs[0]) max_dis = ((ys[-1] - ys[0]) ** 2 + (xs[-1] - xs[0]) ** 2) ** (0.5) diffs = abs(slopes - st_slope) score = diffs.sum() * max_dis / nor_pixel if score < thres: return 0.0 else: return 3.0 labels = glob.glob("data/json/*.json") labels.sort() if not os.path.isdir('abcnet_gen_labels'): os.mkdir('abcnet_gen_labels') for il, label in enumerate(labels): print('Processing: ' + label) imgdir = label.replace('json/', 'image/').replace('.json', '.png') outgt = open(label.replace('dataset/json/', 'abcnet_gen_labels/').replace('.json', '.txt'), 'w') data = [] cts = [] with open(label, "r") as f: jdata = json.loads(f.read()) boxes = jdata["shapes"] for il, box in enumerate(boxes): line, ct = box["points"], box["label"] pts = [] [pts.extend(p) for p in line] if len(line) == 4: pts = line[0] + [(line[0][0] + line[1][0]) // 2, (line[0][1] + line[1][1]) // 2] + line[1] + line[2] + [ (line[2][0] + line[3][0]) / 2, (line[2][1] + line[3][1]) / 2] + line[3] if len(line) == 6: if abs(line[0][0] - line[1][0]) > abs(line[1][0] - line[2][0]): pts = line[0] + [(line[0][0] + line[1][0]) // 2, (line[0][1] + line[1][1]) // 2] + line[1] + line[2] pts += line[3] + [(line[3][0] + line[4][0]) // 2, (line[3][1] + line[4][1]) // 2] + line[4] + line[5] else: pts = line[0] + line[1] + [(line[1][0] + line[2][0]) // 2, (line[1][1] + line[2][1]) // 2] + line[2] pts += line[3] + line[4] + [(line[4][0] + line[5][0]) // 2, (line[4][1] + line[5][1]) // 2] + line[5] data.append(np.array([float(x) for x in pts])) cts.append(ct) ############## top img = plt.imread(imgdir) for iid, ddata in enumerate(data): lh = len(data[iid]) if lh % 4 != 0: print("error: {}".format(label)) break lhc2 = int(lh / 2) lhc4 = int(lh / 4) xcors = [data[iid][i] for i in range(0, len(data[iid]), 2)] ycors = [data[iid][i + 1] for i in range(0, len(data[iid]), 2)] curve_data_top = data[iid][0:lhc2].reshape(lhc4, 2) curve_data_bottom = data[iid][lhc2:].reshape(lhc4, 2) left_vertex_x = [curve_data_top[0, 0], curve_data_bottom[lhc4 - 1, 0]] left_vertex_y = [curve_data_top[0, 1], curve_data_bottom[lhc4 - 1, 1]] right_vertex_x = [curve_data_top[lhc4 - 1, 0], curve_data_bottom[0, 0]] right_vertex_y = [curve_data_top[lhc4 - 1, 1], curve_data_bottom[0, 1]] x_data = curve_data_top[:, 0] y_data = curve_data_top[:, 1] init_control_points = bezier_fit(x_data, y_data) learning_rate = is_close_to_linev2(x_data, y_data, img.size) x0, x1, x2, x3, y0, y1, y2, y3 = train(x_data, y_data, init_control_points, learning_rate) control_points = np.array([ [x0, y0], [x1, y1], [x2, y2], [x3, y3] ]) x_data_b = curve_data_bottom[:, 0] y_data_b = curve_data_bottom[:, 1] init_control_points_b = bezier_fit(x_data_b, y_data_b) learning_rate = is_close_to_linev2(x_data_b, y_data_b, img.size) x0_b, x1_b, x2_b, x3_b, y0_b, y1_b, y2_b, y3_b = train(x_data_b, y_data_b, init_control_points_b, learning_rate) control_points_b = np.array([ [x0_b, y0_b], [x1_b, y1_b], [x2_b, y2_b], [x3_b, y3_b] ]) t_plot = np.linspace(0, 1, 81) Bezier_top = np.array(BezierCoeff(t_plot)).dot(control_points) Bezier_bottom = np.array(BezierCoeff(t_plot)).dot(control_points_b) plt.plot(Bezier_top[:, 0], Bezier_top[:, 1], 'g-', label='fit', linewidth=1) plt.plot(Bezier_bottom[:, 0], Bezier_bottom[:, 1], 'g-', label='fit', linewidth=1) plt.plot(control_points[:, 0], control_points[:, 1], 'r.:', fillstyle='none', linewidth=1) plt.plot(control_points_b[:, 0], control_points_b[:, 1], 'r.:', fillstyle='none', linewidth=1) plt.plot(left_vertex_x, left_vertex_y, 'g-', linewidth=1) plt.plot(right_vertex_x, right_vertex_y, 'g-', linewidth=1) outstr = '{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{}||||{}n'.format(round(x0, 2), round(y0, 2), round(x1, 2), round(y1, 2), round(x2, 2), round(y2, 2), round(x3, 2), round(y3, 2), round(x0_b, 2), round(y0_b, 2), round(x1_b, 2), round(y1_b, 2), round(x2_b, 2), round(y2_b, 2), round(x3_b, 2), round(y3_b, 2), cts[iid]) outgt.writelines(outstr) outgt.close() plt.imshow(img) plt.axis('off') if not os.path.isdir('abcnet_vis'): os.mkdir('abcnet_vis') plt.savefig('abcnet_vis/' + os.path.basename(imgdir), bbox_inches='tight', dpi=400) plt.clf()
将windows_label_tool转成abcnet的训练数据
格式如下
image的id和annotations的image_id对应唯一标识,annotations的id是自增id;
代码如下:
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174# -*- coding: utf-8 -*- """ @File : convert_ann_to_json.py @Time : 2020-8-17 16:13 @Author : yizuotian @Description : 生成windows_label_tool工具的标注格式转换为ABCNet训练的json格式标注 """ import argparse import json import os import sys import cv2 # import bezier_utils import numpy as np def gen_abc_json(abc_gt_dir, abc_json_path, image_dir, classes_path): """ 根据abcnet的gt标注生成coco格式的json标注 :param abc_gt_dir: windows_label_tool标注工具生成标注文件目录 :param abc_json_path: ABCNet训练需要json标注路径 :param image_dir: :param classes_path: 类别文件路径 :return: """ # Desktop Latin_embed. cV2 = [' ', '!', '"', '#', '$', '%', '&', ''', '(', ')', '*', '+', ',', '-', '.', '/', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ':', ';', '<', '=', '>', '?', '@', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '[', '\', ']', '^', '_', '`', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '{', '|', '}', '~'] dataset = { 'licenses': [], 'info': {}, 'categories': [], 'images': [], 'annotations': [] } with open(classes_path) as f: classes = f.read().strip().split() for i, cls in enumerate(classes, 1): dataset['categories'].append({ 'id': i, 'name': cls, 'supercategory': 'beverage', 'keypoints': ['mean', 'xmin', 'x2', 'x3', 'xmax', 'ymin', 'y2', 'y3', 'ymax', 'cross'] # only for BDN }) def get_category_id(cls): for category in dataset['categories']: if category['name'] == cls: return category['id'] # 遍历abcnet txt 标注 indexes = sorted([f.split('.')[0] for f in os.listdir(abc_gt_dir)]) print(indexes) j = 1 # 标注边框id号 # 图像唯一标识 img_index_only = 0 for index in indexes: # if int(index) >3: continue # print('Processing: ' + index) img_index_only += 1 im = cv2.imread(os.path.join(image_dir, '{}.png'.format(index))) cv2.imwrite("./data/image/{}.png".format(index.split("_")[0]+"_"+str(img_index_only)), im) im_height, im_width = im.shape[:2] dataset['images'].append({ 'coco_url': '', 'date_captured': '', 'file_name': index.split("_")[0] + "_" + str(img_index_only) + '.png', 'flickr_url': '', 'id': img_index_only, # img_1 'license': 0, 'width': im_width, 'height': im_height }) anno_file = os.path.join(abc_gt_dir, '{}.txt'.format(index)) with open(anno_file) as f: lines = [line for line in f.readlines() if line.strip()] # 没有清晰的标注,跳过 # if len(lines) <= 1: # continue for i, line in enumerate(lines[0:]): elements = line.strip().split("||||")[0].split(",") control_points = np.array(elements[:16]).reshape((-1, 2)).astype(np.float32) # [14,(x,y)] # control_points = bezier_utils.polygon_to_bezier_pts(polygon, im) # [8,(x,y)] ct = line.strip().split("||||")[-1].replace('"', '').strip() cls = 'text' # segs = [float(kkpart) for kkpart in parts[:16]] segs = [float(kkpart) for kkpart in control_points.flatten()] xt = [segs[ikpart] for ikpart in range(0, len(segs), 2)] yt = [segs[ikpart] for ikpart in range(1, len(segs), 2)] # 过滤越界边框 if max(xt) > im_width or max(yt) > im_height: print('The annotation bounding box is outside of the image:{}'.format(index)) print("max x:{},max y:{},w:{},h:{}".format(max(xt), max(yt), im_width, im_height)) continue xmin = min([xt[0], xt[3], xt[4], xt[7]]) ymin = min([yt[0], yt[3], yt[4], yt[7]]) xmax = max([xt[0], xt[3], xt[4], xt[7]]) ymax = max([yt[0], yt[3], yt[4], yt[7]]) width = max(0, xmax - xmin + 1) height = max(0, ymax - ymin + 1) if width == 0 or height == 0: continue max_len = 100 recs = [len(cV2) + 1 for ir in range(max_len)] ct = str(ct) # print('rec', ct) for ix, ict in enumerate(ct): if ix >= max_len: continue if ict in cV2: recs[ix] = cV2.index(ict) else: recs[ix] = len(cV2) dataset['annotations'].append({ 'area': width * height, 'bbox': [xmin, ymin, width, height], 'category_id': get_category_id(cls), 'id': j, 'image_id': img_index_only, # img_1 'iscrowd': 0, 'bezier_pts': segs, 'rec': recs }) j += 1 # 写入json文件 folder = os.path.dirname(abc_json_path) if not os.path.exists(folder): os.makedirs(folder) with open(abc_json_path, 'w') as f: json.dump(dataset, f) def main(args): gen_abc_json(args.ann_dir, args.dst_json_path, args.image_dir, args.classes_path) if __name__ == '__main__': """ Usage: python convert_ann_to_json.py --ann-dir /path/to/gt --image-dir /path/to/image --dst-json-path train.json """ parse = argparse.ArgumentParser() parse.add_argument("--ann-dir", type=str, default="abcnet_gen_labels") parse.add_argument("--image-dir", type=str, default="./data/json") parse.add_argument("--dst-json-path", type=str, default="./train.json") parse.add_argument("--classes-path", type=str, default='./classes.txt') arguments = parse.parse_args() # sys.argv[1:] main(arguments)
最后
以上就是失眠小海豚最近收集整理的关于【ABCNet】ABCNet训练自己的模型(一)数据标注数据集制作的全部内容,更多相关【ABCNet】ABCNet训练自己内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复