我是靠谱客的博主 内向羊,这篇文章主要介绍[LeetCode]LRU Cache,现在分享给大家,希望可以做个参考。

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

Analysis:

首先,对于cache,如果希望有O(1)的查找复杂度,肯定要用hashmap来保存key和对象的映射。对于LRU而言,问题在于如何用O(1)解决cache entry的替换问题。

简单的说,cache的存储是一个链表的话,那么只要保证从头到尾的顺序就是cache从新到旧的顺序就好了,对于任何一个节点,如果被访问了,那么就将该节点移至头部。如果cache已满,那么就把尾部的删掉,从头部插入新节点。

所以,需要用到两个数据结构

1. hashmap, 保存key和对象位置的映射

2. list,保存对象新旧程度的序列。不一定是list,也可以用vector,不过list的好处是已经实现了头尾操作的api,vector的话,还要自己写,麻烦。

用单向链表复杂度为O(lgn)

双向链表为O(1)

Java 双向链表

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
public class LRUCache { class CacheEntry{ int key; int value; CacheEntry pre; CacheEntry next; public CacheEntry(int k, int v) { this.key = k; this.value = v; } } int l_capacity; HashMap<Integer, CacheEntry> l_HashMapmap; CacheEntry head, tail; // use two way linklist public LRUCache(int capacity) { l_capacity = capacity; l_HashMapmap = new HashMap<>(capacity); head = new CacheEntry(-1, -1); tail = new CacheEntry(1, 1); head.next = tail; tail.pre = head; } public int get(int key) {//if contains key, just get value and update if(l_HashMapmap.containsKey(key)){ CacheEntry cEntry = l_HashMapmap.get(key); MoveToHead(cEntry); return cEntry.value; } else return -1; } public void set(int key, int value) { if(l_HashMapmap.containsKey(key)){//if map contains key, just update value CacheEntry cEntry = l_HashMapmap.get(key); cEntry.value = value; MoveToHead(cEntry); }else if(l_HashMapmap.size()<l_capacity){//not contain & smaller the size CacheEntry cEntry = new CacheEntry(key, value); MoveToHead(cEntry); l_HashMapmap.put(key, cEntry); }else {//not contain key and over the size CacheEntry cEntry = new CacheEntry(key, value); MoveToHead(cEntry); l_HashMapmap.put(key, cEntry); int endIndex = removeEnd(); l_HashMapmap.remove(endIndex); } } private int removeEnd() { // TODO Auto-generated method stub CacheEntry cEntry = tail.pre; tail.pre.pre.next = tail; tail.pre = cEntry.pre; cEntry.pre = null; cEntry.next = null; return cEntry.key; } private void MoveToHead(CacheEntry cEntry) { // TODO Auto-generated method stub if(cEntry.next!=null && cEntry.pre!=null){ cEntry.pre.next = cEntry.next; cEntry.next.pre = cEntry.pre; } cEntry.pre = head; cEntry.next = head.next; head.next.pre = cEntry; head.next = cEntry; } }

c++ 单向链表

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class LRUCache{ public: struct CacheEntry{ public: int key; int value; CacheEntry(int k, int v): key(k), value(v){} }; LRUCache(int capacity){ m_capacity = capacity; } int get(int key){ if(m_map.find(key)==m_map.end()) return -1; MoveToHead(key); return m_map[key]->value; } void set(int key, int value){ if(m_map.find(key)==m_map.end()){ CacheEntry newItem(key, value); if(m_LRU_cache.size()>=m_capacity){//remove from tail m_map.erase(m_LRU_cache.back().key); m_LRU_cache.pop_back(); } //insert in head m_LRU_cache.push_front(newItem); m_map[key] = m_LRU_cache.begin(); return; } m_map[key]->value = value; MoveToHead(key); } private: int m_capacity; list<CacheEntry> m_LRU_cache; unordered_map<int, list<CacheEntry>::iterator> m_map; void MoveToHead(int key){ auto updateEntry = *m_map[key]; m_LRU_cache.erase(m_map[key]); m_LRU_cache.push_front(updateEntry); m_map[key] = m_LRU_cache.begin(); } };




最后

以上就是内向羊最近收集整理的关于[LeetCode]LRU Cache的全部内容,更多相关[LeetCode]LRU内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(74)

评论列表共有 0 条评论

立即
投稿
返回
顶部