我是靠谱客的博主 爱撒娇大神,这篇文章主要介绍【Deep learning AI】用一个隐藏层构建平面数据分类器,现在分享给大家,希望可以做个参考。

该文章来自吴恩达深度学习课程一 week3的作业

 

任务:

1.利用含一个隐藏层的神经网络 实现一个二分类器

2.使用非线性激活函数,如tanh relu

3.计算交叉熵误差

4.实现前向与后向传播

 

#导入所需要的模块

 

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
# Package imports import numpy as np import matplotlib.pyplot as plt from testCases import * import sklearn import sklearn.datasets import sklearn.linear_model from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets %matplotlib inline np.random.seed(1) # set a seed so that the results are consistent

 

#导入数据,并将其可视化

 

复制代码
1
X, Y = load_planar_dataset()
复制代码
1
2
# Visualize the data: plt.scatter(X[0, :], X[1, :], c=Y.reshape(X[0,:].shape), s=40, cmap=plt.cm.Spectral);

 

求出其输入特征个数与样本数

 

复制代码
1
2
3
4
5
6
7
8
9
### START CODE HERE ### (≈ 3 lines of code) shape_X = X.shape shape_Y = Y.shape m = shape_X[1] # training set size ### END CODE HERE ### print ('The shape of X is: ' + str(shape_X)) print ('The shape of Y is: ' + str(shape_Y)) print ('I have m = %d training examples!' % (m))
复制代码
1
2
3
The shape of X is: (2, 200) The shape of Y is: (1, 200) I have m = 200 training examples!

 

在仅仅使用逻辑回归的情况下对图像进行分类

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Plot the decision boundary for logistic regression plot_decision_boundary(lambda x: clf.predict(x), X, Y.reshape(X[0,:].shape))#The part of red was Y plt.title("Logistic Regression") # Print accuracy LR_predictions = clf.predict(X.T) print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) + '% ' + "(percentage of correctly labelled datapoints)")Y.reshape(X[0,:].shape))#The part of red was Y plt.title("Logistic Regression") # Print accuracy LR_predictions = clf.predict(X.T) print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) + '% ' + "(percentage of correctly labelled datapoints)")

注意加红的部分原本为Y,会导致维度不匹配。需要修改成Y.reshape(X[0,:].shape) 或者np.squeeze(Y)都可。

 

可以看出仅使用逻辑回归的分类情况很糟糕,因为数据并不是线性分布的。我们希望能使用神经网络改善预测的表现

 

 

#搭建神经网络

神经网络架构如下图所示

 

前向传播与cost function 的定义

 

 

 

#构建一个神经网络的基本思路

1.定义好自己的神经网络结构

2.初始化自己的各项参数

3. loop 循环

        1.前向传播计算出预测值

        2.利用预测值计算出loss

        3.利用预测值进行后向传播计算出各个参数的梯度

        4.根据更新规则不断更新自己的参数

 

#开始搭建!

首先我们找出:

n_x 输入层的单元数

n_h 隐藏层的单元数

n_y 输出层的单元数

 

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
def layer_sizes(X, Y): """ Arguments: X -- input dataset of shape (input size, number of examples) Y -- labels of shape (output size, number of examples) Returns: n_x -- the size of the input layer n_h -- the size of the hidden layer n_y -- the size of the output layer """ ### START CODE HERE ### (≈ 3 lines of code) n_x = X.shape[0] # size of input layer n_h = 4 n_y = Y.shape[0] # size of output layer ### END CODE HERE ### return (n_x, n_h, n_y)

2.对参数进行初始化

 

使用np.random.randn(a,b)* X 对W进行初始化

使用np.zeros((a,b)) 对b进行初始化

 

输入的n_x , n_h ,n_y 决定了矩阵W和向量B的维度

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
def initialize_parameters(n_x, n_h, n_y): """ Argument: n_x -- size of the input layer n_h -- size of the hidden layer n_y -- size of the output layer Returns: params -- python dictionary containing your parameters: W1 -- weight matrix of shape (n_h, n_x) b1 -- bias vector of shape (n_h, 1) W2 -- weight matrix of shape (n_y, n_h) b2 -- bias vector of shape (n_y, 1) """ np.random.seed(2) # we set up a seed so that your output matches ours although the initialization is random. ### START CODE HERE ### (≈ 4 lines of code) W1 = np.random.randn(n_h,n_x)*0.01 b1 = np.zeros((n_h,1)) W2 = np.random.randn(n_y,n_h)*0.01 b2 = np.zeros((n_y,1)) ### END CODE HERE ### assert (W1.shape == (n_h, n_x)) assert (b1.shape == (n_h, 1)) assert (W2.shape == (n_y, n_h)) assert (b2.shape == (n_y, 1)) parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return parameters

得到的矩阵保存在parameters里面

 

 

3.前向传播函数

对隐藏层使用 tanh激活,最后一层输出层使用sigmoid分类

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
def forward_propagation(X, parameters): """ Argument: X -- input data of size (n_x, m) parameters -- python dictionary containing your parameters (output of initialization function) Returns: A2 -- The sigmoid output of the second activation cache -- a dictionary containing "Z1", "A1", "Z2" and "A2" """ # Retrieve each parameter from the dictionary "parameters" ### START CODE HERE ### (≈ 4 lines of code) W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] ### END CODE HERE ### # Implement Forward Propagation to calculate A2 (probabilities) ### START CODE HERE ### (≈ 4 lines of code) Z1 = np.dot(W1,X)+b1 A1 = np.tanh(Z1) #隐藏层使用tanh激活 Z2 = np.dot(W2,A1)+b2 A2 = 1/(1+np.exp(-Z2)) #输出层用sigmoid函数判断 ### END CODE HERE ### assert(A2.shape == (1, X.shape[1])) cache = {"Z1": Z1, "A1": A1, "Z2": Z2, "A2": A2} return A2, cache

cache中保存了Z1,A1,Z2,A2 用于后向传播的梯度计算

 

4.计算loss

作业中给出的向量化提示

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
def compute_cost(A2, Y, parameters): """ Computes the cross-entropy cost given in equation (13) Arguments: A2 -- The sigmoid output of the second activation, of shape (1, number of examples) Y -- "true" labels vector of shape (1, number of examples) parameters -- python dictionary containing your parameters W1, b1, W2 and b2 Returns: cost -- cross-entropy cost given equation (13) """ m = Y.shape[1] # number of example # Compute the cross-entropy cost ### START CODE HERE ### (≈ 2 lines of code) logprobs = np.multiply(np.log(A2),Y)+np.multiply(np.log(1-A2),1-Y) cost = - np.sum(logprobs)/m ### END CODE HERE ### cost = np.squeeze(cost) # makes sure cost is the dimension we expect. # E.g., turns [[17]] into 17 assert(isinstance(cost, float)) return cost

 

5.后向传播

 

后向传播的部分比较复杂,在我们这个架构中的定义如下

注意计算dZ1的方法,其中g` Z = 1-a^2.上式的*号代表element-wise的乘法

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
def backward_propagation(parameters, cache, X, Y): """ Implement the backward propagation using the instructions above. Arguments: parameters -- python dictionary containing our parameters cache -- a dictionary containing "Z1", "A1", "Z2" and "A2". X -- input data of shape (2, number of examples) Y -- "true" labels vector of shape (1, number of examples) Returns: grads -- python dictionary containing your gradients with respect to different parameters """ m = X.shape[1] # First, retrieve W1 and W2 from the dictionary "parameters". ### START CODE HERE ### (≈ 2 lines of code) W1 = parameters["W1"] W2 = parameters["W2"] ### END CODE HERE ### # Retrieve also A1 and A2 from dictionary "cache". ### START CODE HERE ### (≈ 2 lines of code) A1 = cache["A1"] A2 = cache["A2"] ### END CODE HERE ### # Backward propagation: calculate dW1, db1, dW2, db2. ### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above) dZ2 = A2-Y dW2 = np.dot(dZ2,A1.T)/m db2 = np.sum(dZ2,axis = 1,keepdims = True)/m dZ1 = np.dot(W2.T,dZ2)*(1-np.power(A1,2)) dW1 = np.dot(dZ1,X.T)/m db1 = np.sum(dZ1,axis=1,keepdims = True )/m ### END CODE HERE ### grads = {"dW1": dW1, "db1": db1, "dW2": dW2, "db2": db2} return grads

 

 

6.更新参数

 

θ=θ-α*dθ

 

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
def update_parameters(parameters, grads, learning_rate = 1.2): """ Updates parameters using the gradient descent update rule given above Arguments: parameters -- python dictionary containing your parameters grads -- python dictionary containing your gradients Returns: parameters -- python dictionary containing your updated parameters """ # Retrieve each parameter from the dictionary "parameters" ### START CODE HERE ### (≈ 4 lines of code) W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] ### END CODE HERE ### # Retrieve each gradient from the dictionary "grads" ### START CODE HERE ### (≈ 4 lines of code) dW1 = grads["dW1"] db1 = grads["db1"] dW2 = grads["dW2"] db2 = grads["db2"] ## END CODE HERE ### # Update rule for each parameter ### START CODE HERE ### (≈ 4 lines of code) W1 = W1-learning_rate*dW1 b1 = b1-learning_rate*db1 W2 = W2-learning_rate*dW2 b2 = b2-learning_rate*db2 ### END CODE HERE ### parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return parameters

 

6.对上述函数进行整个组合成一个模型

 

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False): """ Arguments: X -- dataset of shape (2, number of examples) Y -- labels of shape (1, number of examples) n_h -- size of the hidden layer num_iterations -- Number of iterations in gradient descent loop print_cost -- if True, print the cost every 1000 iterations Returns: parameters -- parameters learnt by the model. They can then be used to predict. """ np.random.seed(3) n_x = layer_sizes(X, Y)[0] n_y = layer_sizes(X, Y)[2] # Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2, parameters". ### START CODE HERE ### (≈ 5 lines of code) parameters = initialize_parameters(n_x,n_h,n_y) W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] ### END CODE HERE ### # Loop (gradient descent) for i in range(0, num_iterations): ### START CODE HERE ### (≈ 4 lines of code) # Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache". A2, cache = forward_propagation(X, parameters) # Cost function. Inputs: "A2, Y, parameters". Outputs: "cost". cost = compute_cost(A2, Y, parameters) # Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads". grads = backward_propagation(parameters, cache, X, Y) # Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters". parameters = update_parameters(parameters, grads) ### END CODE HERE ### # Print the cost every 1000 iterations if print_cost and i % 1000 == 0: print ("Cost after iteration %i: %f" %(i, cost)) return parameters

parameters中就含有这个网络所有的训练参数

 

7.进行预测

X_new = (X>threshold) 即可构建出一个根据预测阈值的标签向量

 

 

对新输入的X进行一次前向传播即是进行预测

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
def predict(parameters, X): """ Using the learned parameters, predicts a class for each example in X Arguments: parameters -- python dictionary containing your parameters X -- input data of size (n_x, m) Returns predictions -- vector of predictions of our model (red: 0 / blue: 1) """ # Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold. ### START CODE HERE ### (≈ 2 lines of code) A2, cache = forward_propagation(X, parameters) predictions = (A2>0.5) ### END CODE HERE ### return predictions

 

 

#选择不同的隐藏层的单元数会发生什么?

 

 

最后

以上就是爱撒娇大神最近收集整理的关于【Deep learning AI】用一个隐藏层构建平面数据分类器的全部内容,更多相关【Deep内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(117)

评论列表共有 0 条评论

立即
投稿
返回
顶部