复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470MilenageAlgo.h #ifndef MILENAGE_ALGO_H_INCLUDED #define MILENAGE_ALGO_H_INCLUDED typedef unsigned char BYTE; /*--------------------------- prototypes --------------------------*/ void f1( BYTE op_c[16], BYTE key[16], BYTE rand[16], BYTE sqn[6], BYTE amf[2], BYTE mac_a[8] ); void KeyAdd(BYTE state[4][4], BYTE roundKeys[11][4][4], int round); int ByteSub(BYTE state[4][4]); void f2345 ( BYTE op_c[16], BYTE k[16], BYTE rand[16], BYTE res[8], BYTE ck[16], BYTE ik[16], BYTE ak[6] ); void f1star(BYTE op_c[16], BYTE k[16], BYTE rand[16], BYTE sqn[6], BYTE amf[2], BYTE mac_s[8] ); void f5star( BYTE op_c[16], BYTE k[16], BYTE rand[16], BYTE ak[6] ); void KeyAdd(BYTE state[4][4], BYTE roundKeys[11][4][4], int round); void MixColumn(BYTE state[4][4]); void ComputeOPc( BYTE op[16], BYTE key[16], BYTE op_c[16] ); void RijndaelKeySchedule( BYTE key[16] ); void RijndaelEncrypt( BYTE input[16], BYTE output[16] ); void ShiftRow(BYTE state[4][4]); #endif MilenageAlgo.cpp #include "MilenageAlgo.h" /*------------------------------------------------------------------- * Example algorithms f1, f1*, f2, f3, f4, f5, f5* *------------------------------------------------------------------- * * A sample implementation of the example 3GPP authentication and * key agreement functions f1, f1*, f2, f3, f4, f5 and f5*. This is * a byte-oriented implementation of the functions, and of the block * cipher kernel function Rijndael. * * This has been coded for clarity, not necessarily for efficiency. * * The functions f2, f3, f4 and f5 share the same inputs and have * been coded together as a single function. f1, f1* and f5* are * all coded separately. * *-----------------------------------------------------------------*/ /*-------------------- Rijndael round subkeys ---------------------*/ BYTE roundKeys[11][4][4]; /*--------------------- Rijndael S box table ----------------------*/ BYTE S[256] = { 99,124,119,123,242,107,111,197, 48, 1,103, 43,254,215,171,118, 202,130,201,125,250, 89, 71,240,173,212,162,175,156,164,114,192, 183,253,147, 38, 54, 63,247,204, 52,165,229,241,113,216, 49, 21, 4,199, 35,195, 24,150, 5,154, 7, 18,128,226,235, 39,178,117, 9,131, 44, 26, 27,110, 90,160, 82, 59,214,179, 41,227, 47,132, 83,209, 0,237, 32,252,177, 91,106,203,190, 57, 74, 76, 88,207, 208,239,170,251, 67, 77, 51,133, 69,249, 2,127, 80, 60,159,168, 81,163, 64,143,146,157, 56,245,188,182,218, 33, 16,255,243,210, 205, 12, 19,236, 95,151, 68, 23,196,167,126, 61,100, 93, 25,115, 96,129, 79,220, 34, 42,144,136, 70,238,184, 20,222, 94, 11,219, 224, 50, 58, 10, 73, 6, 36, 92,194,211,172, 98,145,149,228,121, 231,200, 55,109,141,213, 78,169,108, 86,244,234,101,122,174, 8, 186,120, 37, 46, 28,166,180,198,232,221,116, 31, 75,189,139,138, 112, 62,181,102, 72, 3,246, 14, 97, 53, 87,185,134,193, 29,158, 225,248,152, 17,105,217,142,148,155, 30,135,233,206, 85, 40,223, 140,161,137, 13,191,230, 66,104, 65,153, 45, 15,176, 84,187, 22, }; /*------- This array does the multiplication by x in GF(2^8) ------*/ BYTE Xtime[256] = { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98,100,102,104,106,108,110,112,114,116,118,120,122,124,126, 128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158, 160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190, 192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222, 224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254, 27, 25, 31, 29, 19, 17, 23, 21, 11, 9, 15, 13, 3, 1, 7, 5, 59, 57, 63, 61, 51, 49, 55, 53, 43, 41, 47, 45, 35, 33, 39, 37, 91, 89, 95, 93, 83, 81, 87, 85, 75, 73, 79, 77, 67, 65, 71, 69, 123,121,127,125,115,113,119,117,107,105,111,109, 99, 97,103,101, 155,153,159,157,147,145,151,149,139,137,143,141,131,129,135,133, 187,185,191,189,179,177,183,181,171,169,175,173,163,161,167,165, 219,217,223,221,211,209,215,213,203,201,207,205,195,193,199,197, 251,249,255,253,243,241,247,245,235,233,239,237,227,225,231,229 }; /*------------------------------------------------------------------- * Algorithm f1 *------------------------------------------------------------------- * * Computes network authentication code MAC-A from key K, random * challenge RAND, sequence number SQN and authentication management * field AMF. * *-----------------------------------------------------------------*/ void f1( BYTE op_c[16], BYTE key[16], BYTE rand[16], BYTE sqn[6], BYTE amf[2], BYTE mac_a[8] ) { //BYTE op_c[16]; BYTE temp[16]; BYTE in1[16]; BYTE out1[16]; BYTE rijndaelInput[16]; BYTE i; RijndaelKeySchedule( key ); for (i=0; i<16; i++) { rijndaelInput[i] = rand[i] ^ op_c[i]; } RijndaelEncrypt( rijndaelInput, temp ); for (i=0; i<6; i++) { in1[i] = sqn[i]; in1[i+8] = sqn[i]; } for (i=0; i<2; i++) { in1[i+6] = amf[i]; in1[i+14] = amf[i]; } // XOR op_c and in1, rotate by r1=64, and XOR // on the constant c1 (which is all zeroes) for (i=0; i<16; i++) { rijndaelInput[(i+8) % 16] = in1[i] ^ op_c[i]; } // XOR on the value temp computed before for (i=0; i<16; i++) { rijndaelInput[i] ^= temp[i]; } RijndaelEncrypt( rijndaelInput, out1 ); for (i=0; i<16; i++) { out1[i] ^= op_c[i]; } for (i=0; i<8; i++) { mac_a[i] = out1[i]; } return; } // end of function f1 /*------------------------------------------------------------------- * Algorithms f2-f5 *------------------------------------------------------------------- * * Takes op_c key K and random challenge RAND, and returns response RES, * confidentiality key CK, integrity key IK and anonymity key AK. * *-----------------------------------------------------------------*/ void f2345 ( BYTE op_c[16], BYTE k[16], BYTE rand[16], BYTE res[8], BYTE ck[16], BYTE ik[16], BYTE ak[6] ) { BYTE temp[16]; BYTE out[16]; BYTE rijndaelInput[16]; BYTE i; RijndaelKeySchedule( k ); for (i=0; i<16; i++) { rijndaelInput[i] = rand[i] ^ op_c[i]; } RijndaelEncrypt( rijndaelInput, temp ); // To obtain output block OUT2: XOR OPc and TEMP, // rotate by r2=0, and XOR on the constant c2 (which // is all zeroes except that the last bit is 1). for (i=0; i<16; i++) { rijndaelInput[i] = temp[i] ^ op_c[i]; } rijndaelInput[15] ^= 1; RijndaelEncrypt( rijndaelInput, out ); for (i=0; i<16; i++) { out[i] ^= op_c[i]; } for (i=0; i<8; i++) { res[i] = out[i+8]; } for (i=0; i<6; i++) { ak[i] = out[i]; } // To obtain output block OUT3: XOR OPc and TEMP, // rotate by r3=32, and XOR on the constant c3 (which // is all zeroes except that the next to last bit is 1). for (i=0; i<16; i++) { rijndaelInput[(i+12) % 16] = temp[i] ^ op_c[i]; } rijndaelInput[15] ^= 2; RijndaelEncrypt( rijndaelInput, out ); for (i=0; i<16; i++) { out[i] ^= op_c[i]; } for (i=0; i<16; i++) { ck[i] = out[i]; } // To obtain output block OUT4: XOR OPc and TEMP, // rotate by r4=64, and XOR on the constant c4 (which // is all zeroes except that the 2nd from last bit is 1). for (i=0; i<16; i++) { rijndaelInput[(i+8) % 16] = temp[i] ^ op_c[i]; } rijndaelInput[15] ^= 4; RijndaelEncrypt( rijndaelInput, out ); for (i=0; i<16; i++) { out[i] ^= op_c[i]; } for (i=0; i<16; i++) { ik[i] = out[i]; } return; } // end of function f2345 /*------------------------------------------------------------------- * Algorithm f1* *------------------------------------------------------------------- * * Computes resynch authentication code MAC-S from key K, random * challenge RAND, sequence number SQN and authentication management * field AMF. * *-----------------------------------------------------------------*/ void f1star(BYTE op_c[16], BYTE k[16], BYTE rand[16], BYTE sqn[6], BYTE amf[2], BYTE mac_s[8] ) { BYTE temp[16]; BYTE in1[16]; BYTE out1[16]; BYTE rijndaelInput[16]; BYTE i; RijndaelKeySchedule( k ); //ComputeOPc( op_c ); for (i=0; i<16; i++) { rijndaelInput[i] = rand[i] ^ op_c[i]; } RijndaelEncrypt( rijndaelInput, temp ); for (i=0; i<6; i++) { in1[i] = sqn[i]; in1[i+8] = sqn[i]; } for (i=0; i<2; i++) { in1[i+6] = amf[i]; in1[i+14] = amf[i]; } // XOR op_c and in1, rotate by r1=64, and XOR // on the constant c1 (which is all zeroes) for (i=0; i<16; i++) { rijndaelInput[(i+8) % 16] = in1[i] ^ op_c[i]; } // XOR on the value temp computed before for (i=0; i<16; i++) { rijndaelInput[i] ^= temp[i]; } RijndaelEncrypt( rijndaelInput, out1 ); for (i=0; i<16; i++) { out1[i] ^= op_c[i]; } for (i=0; i<8; i++) { mac_s[i] = out1[i+8]; } return; } // end of function f1star /*------------------------------------------------------------------- * Algorithm f5* *------------------------------------------------------------------- * * Takes key K and random challenge RAND, and returns resynch * anonymity key AK. * *-----------------------------------------------------------------*/ void f5star( BYTE op_c[16], BYTE k[16], BYTE rand[16], BYTE ak[6] ) { BYTE temp[16]; BYTE out[16]; BYTE rijndaelInput[16]; BYTE i; RijndaelKeySchedule( k ); for (i=0; i<16; i++) { rijndaelInput[i] = rand[i] ^ op_c[i]; } RijndaelEncrypt( rijndaelInput, temp ); // To obtain output block OUT5: XOR OPc and TEMP, // rotate by r5=96, and XOR on the constant c5 (which // is all zeroes except that the 3rd from last bit is 1). for (i=0; i<16; i++) { rijndaelInput[(i+4) % 16] = temp[i] ^ op_c[i]; } rijndaelInput[15] ^= 8; RijndaelEncrypt( rijndaelInput, out ); for (i=0; i<16; i++) { out[i] ^= op_c[i]; } for (i=0; i<6; i++) { ak[i] = out[i]; } return; } // end of function f5star /*------------------------------------------------------------------- * Function to compute OPc from OP and K. Assumes key schedule has already been performed. *-----------------------------------------------------------------*/ void ComputeOPc( BYTE op[16], BYTE key[16], BYTE op_c[16] ) { BYTE i; RijndaelKeySchedule(key); RijndaelEncrypt( op, op_c ); for (i=0; i<16; i++) { op_c[i] ^= op[i]; } return; } // end of function ComputeOPc /*------------------------------------------------------------------- * Rijndael key schedule function. Takes 16-byte key and creates * all Rijndael's internal subkeys ready for encryption. *-----------------------------------------------------------------*/ void RijndaelKeySchedule( BYTE key[16] ) { BYTE roundConst; int i, j; // first round key equals key for (i=0; i<16; i++) { roundKeys[0][i & 0x03][i>>2] = key[i]; } roundConst = 1; // now calculate round keys */ for (i=1; i<11; i++) { roundKeys[i][0][0] = S[roundKeys[i-1][1][3]] ^ roundKeys[i-1][0][0] ^ roundConst; roundKeys[i][1][0] = S[roundKeys[i-1][2][3]] ^ roundKeys[i-1][1][0]; roundKeys[i][2][0] = S[roundKeys[i-1][3][3]] ^ roundKeys[i-1][2][0]; roundKeys[i][3][0] = S[roundKeys[i-1][0][3]] ^ roundKeys[i-1][3][0]; for (j=0; j<4; j++) { roundKeys[i][j][1] = roundKeys[i-1][j][1] ^ roundKeys[i][j][0]; roundKeys[i][j][2] = roundKeys[i-1][j][2] ^ roundKeys[i][j][1]; roundKeys[i][j][3] = roundKeys[i-1][j][3] ^ roundKeys[i][j][2]; } // update round constant */ roundConst = Xtime[roundConst]; } return; } // end of function RijndaelKeySchedule // Round key addition function void KeyAdd(BYTE state[4][4], BYTE roundKeys[11][4][4], int round) { int i, j; for (i=0; i<4; i++) { for (j=0; j<4; j++) { state[i][j] ^= roundKeys[round][i][j]; } } return; } // Byte substitution transformation int ByteSub(BYTE state[4][4]) { int i, j; for (i=0; i<4; i++) { for (j=0; j<4; j++) { state[i][j] = S[state[i][j]]; } } return 0; } //Row shift transformation void ShiftRow(BYTE state[4][4]) { BYTE temp; // left rotate row 1 by 1 temp = state[1][0]; state[1][0] = state[1][1]; state[1][1] = state[1][2]; state[1][2] = state[1][3]; state[1][3] = temp; //left rotate row 2 by 2 temp = state[2][0]; state[2][0] = state[2][2]; state[2][2] = temp; temp = state[2][1]; state[2][1] = state[2][3]; state[2][3] = temp; // left rotate row 3 by 3 temp = state[3][0]; state[3][0] = state[3][3]; state[3][3] = state[3][2]; state[3][2] = state[3][1]; state[3][1] = temp; return; } // MixColumn transformation void MixColumn(BYTE state[4][4]) { BYTE temp, tmp, tmp0; int i; // do one column at a time for (i=0; i<4;i++) { temp = state[0][i] ^ state[1][i] ^ state[2][i] ^ state[3][i]; tmp0 = state[0][i]; // Xtime array does multiply by x in GF2^8 tmp = Xtime[state[0][i] ^ state[1][i]]; state[0][i] ^= temp ^ tmp; tmp = Xtime[state[1][i] ^ state[2][i]]; state[1][i] ^= temp ^ tmp; tmp = Xtime[state[2][i] ^ state[3][i]]; state[2][i] ^= temp ^ tmp; tmp = Xtime[state[3][i] ^ tmp0]; state[3][i] ^= temp ^ tmp; } return; } /*------------------------------------------------------------------- * Rijndael encryption function. Takes 16-byte input and creates * 16-byte output (using round keys already derived from 16-byte * key). *-----------------------------------------------------------------*/ void RijndaelEncrypt( BYTE input[16], BYTE output[16] ) { BYTE state[4][4]; int i, r; // initialise state array from input byte string for (i=0; i<16; i++) { state[i & 0x3][i>>2] = input[i]; } // add first round_key KeyAdd(state, roundKeys, 0); // do lots of full rounds for (r=1; r<=9; r++) { ByteSub(state); ShiftRow(state); MixColumn(state); KeyAdd(state, roundKeys, r); } // final round ByteSub(state); ShiftRow(state); KeyAdd(state, roundKeys, r); // produce output byte string from state array for (i=0; i<16; i++) { output[i] = state[i & 0x3][i>>2]; } return; } // end of function RijndaelEncrypt /* 全部源代码在共享资源中*/
最后
以上就是独特心锁最近收集整理的关于关于登网鉴权Milenage算法C++实现(根据3GPP TS 35.206 V6.0.0程序修改)的全部内容,更多相关关于登网鉴权Milenage算法C++实现(根据3GPP内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复